mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 22:34:22 +00:00
WIP Migrate Dense layer
This commit is contained in:
@@ -1,80 +1,58 @@
|
||||
#include "dense.hpp"
|
||||
|
||||
#include <format>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "dense.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Dense::Dense(int inputSize, int outputSize, ActivationType activationType)
|
||||
: inputSize(inputSize), outputSize(outputSize) {
|
||||
Dense::Dense(CUDANet::Backend *backend, CUDANet::Shape input_shape, CUDANet::Shape output_shape)
|
||||
: backend(backend), in_shape(input_shape), out_shape(output_shape) {
|
||||
// Allocate memory for weights and biases
|
||||
weights.resize(outputSize * inputSize);
|
||||
biases.resize(outputSize);
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
if (input_shape.size() != 1) {
|
||||
throw std::runtime_error(std::format("Invalid shape. Expected [1], got {}", input_shape));
|
||||
}
|
||||
|
||||
if (output_shape.size() != 1) {
|
||||
throw std::runtime_error(std::format("Invalid shape. Expected [1], got {}", output_shape));
|
||||
}
|
||||
|
||||
activation = new Activation(activationType, outputSize);
|
||||
auto input_len = input_shape[0];
|
||||
auto output_len = output_shape[0];
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
auto weights = CUDANet::Tensor{Shape(input_len * output_len), CUDANet::DType::FLOAT32, backend};
|
||||
auto biases = CUDANet::Tensor(Shape(output_len), CUDANet::DType::FLOAT32, backend);
|
||||
|
||||
weights.zero();
|
||||
biases.zero();
|
||||
}
|
||||
|
||||
Dense::~Dense() {
|
||||
delete activation;
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
CUDANet::Tensor& Dense::forward(CUDANet::Tensor &input);
|
||||
|
||||
CUDANet::Shape Dense::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
void Dense::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
||||
CUDANet::Shape Dense::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
void Dense::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
}
|
||||
size_t Dense::input_size() {
|
||||
return in_shape[0];
|
||||
};
|
||||
|
||||
float* Dense::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
size_t Dense::output_size() {
|
||||
return out_shape[0];
|
||||
};
|
||||
|
||||
float* Dense::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
void Dense::set_weights(CUDANet::Tensor &input);
|
||||
|
||||
void Dense::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getWeights() {
|
||||
CUDANet::Tensor& Dense::get_weights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Dense::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
void Dense::set_biases(CUDANet::Tensor &input);
|
||||
|
||||
std::vector<float> Dense::getBiases() {
|
||||
CUDANet::Tensor& Dense::get_biases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
int Dense::getOutputSize() {
|
||||
return outputSize;
|
||||
}
|
||||
|
||||
int Dense::getInputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
Reference in New Issue
Block a user