mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 17:54:27 +00:00
Split tests to cpu and cuda
This commit is contained in:
268
test/cuda/kernels/test_matmul.cu
Normal file
268
test/cuda/kernels/test_matmul.cu
Normal file
@@ -0,0 +1,268 @@
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
#include "vector.cuh"
|
||||
#include "matmul.cuh"
|
||||
|
||||
TEST(MatMulTest, MatVecMulTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
int w = 10;
|
||||
int h = 5;
|
||||
|
||||
float* d_matrix;
|
||||
float* d_vector;
|
||||
float* d_output;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_matrix, sizeof(float) * w * h);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_vector, sizeof(float) * w);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * h);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> matrix = {
|
||||
0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f,
|
||||
0.641f, 0.445f, 0.528f, 0.316f, 0.247f, 0.181f, 0.549f, 0.328f, 0.919f, 0.405f,
|
||||
0.733f, 0.287f, 0.901f, 0.602f, 0.816f, 0.495f, 0.797f, 0.210f, 0.305f, 0.613f,
|
||||
0.178f, 0.856f, 0.724f, 0.263f, 0.559f, 0.677f, 0.193f, 0.389f, 0.488f, 0.848f,
|
||||
0.121f, 0.734f, 0.587f, 0.904f, 0.312f, 0.672f, 0.807f, 0.478f, 0.581f, 0.964f
|
||||
};
|
||||
std::vector<float> vector = {
|
||||
0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f
|
||||
};
|
||||
|
||||
cudaStatus = cudaMemcpy(d_matrix, matrix.data(), sizeof(float) * w * h, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMemcpy(d_vector, vector.data(), sizeof(float) * w, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
int grid_size = (std::max(w, h) + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
|
||||
CUDANet::Utils::clear(d_output, h);
|
||||
|
||||
CUDANet::Kernels::mat_vec_mul<<<grid_size, BLOCK_SIZE>>>(d_matrix, d_vector, d_output, w, h);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> output_gpu(h);
|
||||
cudaStatus = cudaMemcpy(output_gpu.data(), d_output, sizeof(float) * h, cudaMemcpyDeviceToHost);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
for (int i = 0; i < h; i++) {
|
||||
float sum = 0.0f;
|
||||
for (int j = 0; j < w; j++) {
|
||||
sum += matrix[i * w + j] * vector[j];
|
||||
}
|
||||
EXPECT_NEAR(sum, output_gpu[i], 1e-5f);
|
||||
}
|
||||
|
||||
cudaFree(d_matrix);
|
||||
cudaFree(d_vector);
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
TEST(MatMulTest, MaxReduceTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
const int n = 1 << 16;
|
||||
|
||||
std::vector<float> input(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
input[i] = i;
|
||||
}
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
const int grid_size = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_input, d_output, n);
|
||||
|
||||
int remaining = grid_size;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_output, d_output, remaining);
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
std::vector<float> output(n);
|
||||
cudaStatus = cudaMemcpy(output.data(), d_output, sizeof(float), cudaMemcpyDeviceToHost);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_EQ(output[0], 65535.0f);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
|
||||
}
|
||||
|
||||
TEST(MatMulTest, VecExpTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
float input[6] = {22.496f, 36.9006f, 30.9904f,
|
||||
28.4213f, 26.4541f, 31.7887f};
|
||||
|
||||
std::vector<float> expected = {5886928896.0f, 1.06102872080384e+16f,
|
||||
28771323215872.0f, 2204012904448.0f,
|
||||
308226162688.0f, 63922983927808.0f};
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus =
|
||||
cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
CUDANet::Kernels::vec_exp<<<1, 6>>>(d_input, d_output, 6);
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> output(6);
|
||||
|
||||
cudaStatus = cudaMemcpy(
|
||||
output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
for (int i = 0; i < 6; i++) {
|
||||
EXPECT_NEAR(expected[i], output[i], 1e7f);
|
||||
}
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_output);
|
||||
|
||||
|
||||
}
|
||||
|
||||
TEST(MatMulTest, SumReduceTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
const int n = 1 << 16;
|
||||
|
||||
std::vector<float> input(n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
input[i] = 1.0f;
|
||||
}
|
||||
|
||||
const float expected = n;
|
||||
|
||||
float* d_input = nullptr;
|
||||
float* d_sum = nullptr;
|
||||
|
||||
const int gridSize = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_sum, sizeof(float) * n);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus =
|
||||
cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
CUDANet::Utils::clear(d_sum, n);
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_sum, n
|
||||
);
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
|
||||
std::vector<float> sum(n);
|
||||
cudaStatus = cudaMemcpy(
|
||||
sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost
|
||||
);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_FLOAT_EQ(expected, sum[0]);
|
||||
|
||||
cudaFree(d_input);
|
||||
cudaFree(d_sum);
|
||||
}
|
||||
|
||||
TEST(MatMulTest, VecScaleTest) {
|
||||
cudaError_t cudaStatus;
|
||||
int len = 1000;
|
||||
float* d_src;
|
||||
float* d_dst;
|
||||
float* d_scale;
|
||||
float* d_epsilon;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_src, sizeof(float) * len);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_dst, sizeof(float) * len);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_scale, sizeof(float));
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_epsilon, sizeof(float));
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> src(len);
|
||||
for (int i = 0; i < len; ++i) {
|
||||
src[i] = static_cast<float>(rand()) / RAND_MAX;
|
||||
}
|
||||
|
||||
float scale = 1.5f;
|
||||
float epsilon = 1e-5f;
|
||||
|
||||
cudaStatus = cudaMemcpy(d_src, src.data(), sizeof(float) * len, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
cudaStatus = cudaMemcpy(d_scale, &scale, sizeof(float), cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
cudaStatus = cudaMemcpy(d_epsilon, &epsilon, sizeof(float), cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
int grid_size = (len + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::vec_scale<<<grid_size, BLOCK_SIZE>>>(d_src, d_dst, d_scale, d_epsilon, len);
|
||||
|
||||
cudaStatus = cudaDeviceSynchronize();
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
std::vector<float> dst_gpu(len);
|
||||
cudaStatus = cudaMemcpy(dst_gpu.data(), d_dst, sizeof(float) * len, cudaMemcpyDeviceToHost);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
float inv_std = 1.0f / std::sqrt(scale + epsilon);
|
||||
for (int i = 0; i < len; ++i) {
|
||||
EXPECT_NEAR(src[i] * inv_std, dst_gpu[i], 1e-5f);
|
||||
}
|
||||
|
||||
cudaFree(d_src);
|
||||
cudaFree(d_dst);
|
||||
cudaFree(d_scale);
|
||||
cudaFree(d_epsilon);
|
||||
}
|
||||
Reference in New Issue
Block a user