mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-07 02:04:26 +00:00
Refactor model test
This commit is contained in:
@@ -1,6 +1,3 @@
|
|||||||
#include <iostream>
|
|
||||||
#include <string>
|
|
||||||
|
|
||||||
#include "activation.cuh"
|
#include "activation.cuh"
|
||||||
#include "conv2d.cuh"
|
#include "conv2d.cuh"
|
||||||
#include "convolution.cuh"
|
#include "convolution.cuh"
|
||||||
|
|||||||
@@ -5,60 +5,78 @@
|
|||||||
#include "max_pooling.cuh"
|
#include "max_pooling.cuh"
|
||||||
#include "model.hpp"
|
#include "model.hpp"
|
||||||
|
|
||||||
TEST(Model, TestModelPredict) {
|
class ModelTest : public ::testing::Test {
|
||||||
int inputSize = 6;
|
protected:
|
||||||
int inputChannels = 2;
|
CUDANet::Model* commonTestSetup(
|
||||||
int outputSize = 3;
|
int inputSize = 6,
|
||||||
|
int inputChannels = 2,
|
||||||
|
int outputSize = 3,
|
||||||
|
|
||||||
int kernelSize = 3;
|
int kernelSize = 3,
|
||||||
int stride = 1;
|
int stride = 1,
|
||||||
int numFilters = 2;
|
int numFilters = 2,
|
||||||
|
|
||||||
int poolingSize = 2;
|
int poolingSize = 2,
|
||||||
int poolingStride = 2;
|
int poolingStride = 2
|
||||||
|
) {
|
||||||
|
|
||||||
CUDANet::Model model(inputSize, inputChannels, outputSize);
|
CUDANet::Model *model = new CUDANet::Model(inputSize, inputChannels, outputSize);
|
||||||
|
|
||||||
// Conv2d
|
// Conv2d
|
||||||
CUDANet::Layers::Conv2d conv2d(
|
CUDANet::Layers::Conv2d *conv2d = new CUDANet::Layers::Conv2d(
|
||||||
inputSize, inputChannels, kernelSize, stride, numFilters, CUDANet::Layers::Padding::VALID,
|
inputSize, inputChannels, kernelSize, stride, numFilters, CUDANet::Layers::Padding::VALID,
|
||||||
CUDANet::Layers::ActivationType::NONE
|
CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
// weights 6*6*2*2
|
// weights 6*6*2*2
|
||||||
std::vector<float> conv2dWeights = {
|
std::vector<float> conv2dWeights = {
|
||||||
0.18313f, 0.53363f, 0.39527f, 0.27575f, 0.3433f, 0.41746f,
|
0.18313f, 0.53363f, 0.39527f, 0.27575f, 0.3433f, 0.41746f,
|
||||||
0.16831f, 0.61693f, 0.54599f, 0.99692f, 0.77127f, 0.25146f,
|
0.16831f, 0.61693f, 0.54599f, 0.99692f, 0.77127f, 0.25146f,
|
||||||
0.4206f, 0.16291f, 0.93484f, 0.79765f, 0.74982f, 0.78336f,
|
0.4206f, 0.16291f, 0.93484f, 0.79765f, 0.74982f, 0.78336f,
|
||||||
0.6386f, 0.87744f, 0.33587f, 0.9691f, 0.68437f, 0.65098f,
|
0.6386f, 0.87744f, 0.33587f, 0.9691f, 0.68437f, 0.65098f,
|
||||||
0.48153f, 0.97546f, 0.8026f, 0.36689f, 0.98152f, 0.37351f,
|
0.48153f, 0.97546f, 0.8026f, 0.36689f, 0.98152f, 0.37351f,
|
||||||
0.68407f, 0.2684f, 0.2855f, 0.76195f, 0.67828f, 0.603f
|
0.68407f, 0.2684f, 0.2855f, 0.76195f, 0.67828f, 0.603f
|
||||||
};
|
};
|
||||||
conv2d.setWeights(conv2dWeights.data());
|
conv2d->setWeights(conv2dWeights.data());
|
||||||
model.addLayer("conv2d", &conv2d);
|
model->addLayer("conv2d", conv2d);
|
||||||
|
|
||||||
// maxpool2d
|
// maxpool2d
|
||||||
CUDANet::Layers::MaxPooling2D maxpool2d(
|
CUDANet::Layers::MaxPooling2D *maxpool2d = new CUDANet::Layers::MaxPooling2D(
|
||||||
inputSize - kernelSize + 1, numFilters, poolingSize, poolingStride, CUDANet::Layers::ActivationType::RELU
|
inputSize - kernelSize + 1, numFilters, poolingSize, poolingStride, CUDANet::Layers::ActivationType::RELU
|
||||||
);
|
);
|
||||||
model.addLayer("maxpool2d", &maxpool2d);
|
model->addLayer("maxpool2d", maxpool2d);
|
||||||
|
|
||||||
// dense
|
// dense
|
||||||
CUDANet::Layers::Dense dense(
|
CUDANet::Layers::Dense *dense = new CUDANet::Layers::Dense(
|
||||||
8, 3, CUDANet::Layers::ActivationType::SOFTMAX
|
8, 3, CUDANet::Layers::ActivationType::SOFTMAX
|
||||||
);
|
);
|
||||||
// dense weights 18*6
|
// dense weights 18*6
|
||||||
std::vector<float> denseWeights = {
|
std::vector<float> denseWeights = {
|
||||||
0.36032f, 0.33115f, 0.02948f,
|
0.36032f, 0.33115f, 0.02948f,
|
||||||
0.09802f, 0.45072f, 0.56266f,
|
0.09802f, 0.45072f, 0.56266f,
|
||||||
0.43514f, 0.80946f, 0.43439f,
|
0.43514f, 0.80946f, 0.43439f,
|
||||||
0.90916f, 0.08605f, 0.07473f,
|
0.90916f, 0.08605f, 0.07473f,
|
||||||
0.94788f, 0.66168f, 0.34927f,
|
0.94788f, 0.66168f, 0.34927f,
|
||||||
0.09464f, 0.61963f, 0.73775f,
|
0.09464f, 0.61963f, 0.73775f,
|
||||||
0.51559f, 0.81916f, 0.64915f,
|
0.51559f, 0.81916f, 0.64915f,
|
||||||
0.03934f, 0.87608f, 0.68364f,
|
0.03934f, 0.87608f, 0.68364f,
|
||||||
};
|
};
|
||||||
dense.setWeights(denseWeights.data());
|
dense->setWeights(denseWeights.data());
|
||||||
model.addLayer("dense", &dense);
|
model->addLayer("dense", dense);
|
||||||
|
|
||||||
|
return model;
|
||||||
|
}
|
||||||
|
|
||||||
|
void commonTestTeardown(float* d_input) {
|
||||||
|
cudaDeviceReset();
|
||||||
|
}
|
||||||
|
|
||||||
|
cudaError_t cudaStatus;
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(ModelTest, TestModelPredict) {
|
||||||
|
|
||||||
|
int outputSize = 3;
|
||||||
|
CUDANet::Model *model = commonTestSetup();
|
||||||
|
|
||||||
// input 6*6*2
|
// input 6*6*2
|
||||||
std::vector<float> input = {
|
std::vector<float> input = {
|
||||||
@@ -78,7 +96,7 @@ TEST(Model, TestModelPredict) {
|
|||||||
std::vector<float> expected = {2e-05f, 0.00021f, 0.99977f};
|
std::vector<float> expected = {2e-05f, 0.00021f, 0.99977f};
|
||||||
|
|
||||||
// predict
|
// predict
|
||||||
const float* output = model.predict(input.data());
|
const float* output = model->predict(input.data());
|
||||||
|
|
||||||
float sum = 0.0f;
|
float sum = 0.0f;
|
||||||
for (int i = 0; i < outputSize; ++i) {
|
for (int i = 0; i < outputSize; ++i) {
|
||||||
@@ -87,6 +105,4 @@ TEST(Model, TestModelPredict) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||||
|
|
||||||
cudaDeviceReset();
|
|
||||||
}
|
}
|
||||||
Reference in New Issue
Block a user