Fix some dense layer issues

This commit is contained in:
2025-11-18 22:17:08 +01:00
parent 7f203b8947
commit 4c26efe826
8 changed files with 110 additions and 44 deletions

View File

@@ -1,25 +1,29 @@
#include "backend/cuda.cuh"
#include "utils/cuda_helper.cuh"
#include "kernels/activation_functions.cuh"
#include "kernels/matmul.cuh"
#include "utils/cuda_helper.cuh"
using namespace CUDANet::Backend;
void CUDA::relu(Tensor &tensor) {
void CUDA::relu(Tensor& tensor) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(tensor.data<float>(), tensor.data<float>(), tensor.numel());
Kernels::relu<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
}
void CUDA::sigmoid(Tensor &tensor) {
void CUDA::sigmoid(Tensor& tensor) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>(tensor.data<float>(), tensor.data<float>(), tensor.numel());
Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
}
void CUDA::softmax(Tensor &tensor, Tensor &temp_max, Tensor &temp_sum) {
void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
// Find max value
@@ -27,7 +31,8 @@ void CUDA::softmax(Tensor &tensor, Tensor &temp_max, Tensor &temp_sum) {
// Subtract max value to improve numerical stability
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), temp_max.data<float>(), tensor.numel()
tensor.data<float>(), tensor.data<float>(), temp_max.data<float>(),
tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
@@ -36,30 +41,39 @@ void CUDA::softmax(Tensor &tensor, Tensor &temp_max, Tensor &temp_sum) {
tensor.data<float>(), tensor.data<float>(), tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
// Find sum
sum(tensor, temp_sum);
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), temp_sum.data<float>(), tensor.numel()
tensor.data<float>(), tensor.data<float>(), temp_sum.data<float>(),
tensor.numel()
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());
}
CUDANet::Tensor& CUDA::dense(CUDANet::Tensor &weights, CUDANet::Tensor &biases, CUDANet::Tensor &input, CUDANet::Tensor &output, size_t input_size, size_t output_size) {
CUDANet::Tensor& CUDA::dense(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) {
auto forwardGridSize =
(std::max(input_size, output_size) + BLOCK_SIZE - 1) / BLOCK_SIZE;
auto biasGridSize = (output_size + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
weights.data<float>(), input.data<float>(), output.data<float>(), input_size, output_size
weights.data<float>(), input.data<float>(), output.data<float>(),
input_size, output_size
);
CUDA_CHECK(cudaGetLastError());
Kernels::vec_vec_add<<<biasGridSize, BLOCK_SIZE>>>(
biases.data<float>(), output.data<float>(), output.data<float>(), output_size
biases.data<float>(), output.data<float>(), output.data<float>(),
output_size
);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize());