mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Add padding to avg pooling
This commit is contained in:
@@ -23,7 +23,8 @@ __global__ void avg_pooling(
|
|||||||
const dim2d outputSize,
|
const dim2d outputSize,
|
||||||
const int nChannels,
|
const int nChannels,
|
||||||
const dim2d poolingSize,
|
const dim2d poolingSize,
|
||||||
const dim2d stride
|
const dim2d stride,
|
||||||
|
const dim2d padding
|
||||||
);
|
);
|
||||||
|
|
||||||
} // namespace CUDANet::Kernels
|
} // namespace CUDANet::Kernels
|
||||||
|
|||||||
@@ -13,6 +13,7 @@ class AvgPooling2d : public SequentialLayer, public TwoDLayer {
|
|||||||
int nChannels,
|
int nChannels,
|
||||||
dim2d poolingSize,
|
dim2d poolingSize,
|
||||||
dim2d stride,
|
dim2d stride,
|
||||||
|
dim2d padding,
|
||||||
ActivationType activationType
|
ActivationType activationType
|
||||||
);
|
);
|
||||||
~AvgPooling2d();
|
~AvgPooling2d();
|
||||||
@@ -40,6 +41,7 @@ class AvgPooling2d : public SequentialLayer, public TwoDLayer {
|
|||||||
int nChannels;
|
int nChannels;
|
||||||
dim2d poolingSize;
|
dim2d poolingSize;
|
||||||
dim2d stride;
|
dim2d stride;
|
||||||
|
dim2d padding;
|
||||||
|
|
||||||
dim2d outputSize;
|
dim2d outputSize;
|
||||||
|
|
||||||
|
|||||||
@@ -47,7 +47,8 @@ __global__ void Kernels::avg_pooling(
|
|||||||
const dim2d outputSize,
|
const dim2d outputSize,
|
||||||
const int nChannels,
|
const int nChannels,
|
||||||
const dim2d poolingSize,
|
const dim2d poolingSize,
|
||||||
const dim2d stride
|
const dim2d stride,
|
||||||
|
const dim2d padding
|
||||||
) {
|
) {
|
||||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||||
@@ -61,11 +62,16 @@ __global__ void Kernels::avg_pooling(
|
|||||||
|
|
||||||
for (int k = 0; k < poolingSize.first; k++) {
|
for (int k = 0; k < poolingSize.first; k++) {
|
||||||
for (int l = 0; l < poolingSize.second; l++) {
|
for (int l = 0; l < poolingSize.second; l++) {
|
||||||
int inputIndex = c * inputSize.first * inputSize.second +
|
|
||||||
(i * stride.first + k) * inputSize.second +
|
|
||||||
(j * stride.second + l);
|
|
||||||
|
|
||||||
sum += d_input[inputIndex];
|
int inputRow = i * stride.first + k - padding.first;
|
||||||
|
int inputCol = j * stride.second + l - padding.second;
|
||||||
|
|
||||||
|
if (inputRow >= 0 && inputRow < inputSize.first &&
|
||||||
|
inputCol >= 0 && inputCol < inputSize.second) {
|
||||||
|
int inputIndex = c * inputSize.first * inputSize.second +
|
||||||
|
inputRow * inputSize.second + inputCol;
|
||||||
|
sum += d_input[inputIndex];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -9,15 +9,17 @@ AvgPooling2d::AvgPooling2d(
|
|||||||
int nChannels,
|
int nChannels,
|
||||||
dim2d poolingSize,
|
dim2d poolingSize,
|
||||||
dim2d stride,
|
dim2d stride,
|
||||||
|
dim2d padding,
|
||||||
ActivationType activationType
|
ActivationType activationType
|
||||||
)
|
)
|
||||||
: inputSize(inputSize),
|
: inputSize(inputSize),
|
||||||
nChannels(nChannels),
|
nChannels(nChannels),
|
||||||
poolingSize(poolingSize),
|
poolingSize(poolingSize),
|
||||||
stride(stride) {
|
stride(stride),
|
||||||
|
padding(padding) {
|
||||||
outputSize = {
|
outputSize = {
|
||||||
(inputSize.first - poolingSize.first) / stride.first + 1,
|
(inputSize.first + 2 * padding.first - poolingSize.first) / stride.first + 1,
|
||||||
(inputSize.second - poolingSize.second) / stride.second + 1
|
(inputSize.second + 2 * padding.second - poolingSize.second) / stride.second + 1
|
||||||
};
|
};
|
||||||
|
|
||||||
activation = new Activation(
|
activation = new Activation(
|
||||||
@@ -45,7 +47,8 @@ float* AvgPooling2d::forward(const float* d_input) {
|
|||||||
);
|
);
|
||||||
|
|
||||||
Kernels::avg_pooling<<<grid, block>>>(
|
Kernels::avg_pooling<<<grid, block>>>(
|
||||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize, stride
|
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||||
|
stride, padding
|
||||||
);
|
);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
|
||||||
|
|||||||
@@ -11,6 +11,7 @@ class AvgPoolingLayerTest : public ::testing::Test {
|
|||||||
int nChannels;
|
int nChannels;
|
||||||
dim2d poolingSize;
|
dim2d poolingSize;
|
||||||
dim2d stride;
|
dim2d stride;
|
||||||
|
dim2d padding;
|
||||||
std::vector<float> input;
|
std::vector<float> input;
|
||||||
std::vector<float> expected;
|
std::vector<float> expected;
|
||||||
|
|
||||||
@@ -34,7 +35,7 @@ class AvgPoolingLayerTest : public ::testing::Test {
|
|||||||
cudaError_t cudaStatus;
|
cudaError_t cudaStatus;
|
||||||
|
|
||||||
avgPoolingLayer = new CUDANet::Layers::AvgPooling2d(
|
avgPoolingLayer = new CUDANet::Layers::AvgPooling2d(
|
||||||
inputSize, nChannels, poolingSize, stride,
|
inputSize, nChannels, poolingSize, stride, padding,
|
||||||
CUDANet::Layers::ActivationType::NONE
|
CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
|
|
||||||
@@ -75,6 +76,7 @@ TEST_F(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
|||||||
nChannels = 2;
|
nChannels = 2;
|
||||||
poolingSize = {2, 2};
|
poolingSize = {2, 2};
|
||||||
stride = {2, 2};
|
stride = {2, 2};
|
||||||
|
padding = {0, 0};
|
||||||
|
|
||||||
input = {
|
input = {
|
||||||
// clang-format off
|
// clang-format off
|
||||||
@@ -102,6 +104,7 @@ TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareInputTest) {
|
|||||||
nChannels = 2;
|
nChannels = 2;
|
||||||
poolingSize = {2, 2};
|
poolingSize = {2, 2};
|
||||||
stride = {2, 2};
|
stride = {2, 2};
|
||||||
|
padding = {0, 0};
|
||||||
|
|
||||||
input = {// Channel 0
|
input = {// Channel 0
|
||||||
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
|
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
|
||||||
@@ -124,6 +127,7 @@ TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePoolingTest) {
|
|||||||
nChannels = 2;
|
nChannels = 2;
|
||||||
poolingSize = {2, 3}; // Non-square pooling
|
poolingSize = {2, 3}; // Non-square pooling
|
||||||
stride = {2, 2};
|
stride = {2, 2};
|
||||||
|
padding = {0, 0};
|
||||||
|
|
||||||
input = {// Channel 0
|
input = {// Channel 0
|
||||||
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
@@ -143,6 +147,7 @@ TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareStrideTest) {
|
|||||||
nChannels = 2;
|
nChannels = 2;
|
||||||
poolingSize = {2, 2};
|
poolingSize = {2, 2};
|
||||||
stride = {1, 2}; // Non-square stride
|
stride = {1, 2}; // Non-square stride
|
||||||
|
padding = {0, 0};
|
||||||
|
|
||||||
input = {// Channel 0
|
input = {// Channel 0
|
||||||
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
@@ -155,5 +160,26 @@ TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareStrideTest) {
|
|||||||
expected = {0.43775f, 0.49475f, 0.3315f, 0.43775f, 0.48975f, 0.339f,
|
expected = {0.43775f, 0.49475f, 0.3315f, 0.43775f, 0.48975f, 0.339f,
|
||||||
0.45675f, 0.303f, 0.34075f, 0.43275f, 0.56975f, 0.57025f};
|
0.45675f, 0.303f, 0.34075f, 0.43275f, 0.56975f, 0.57025f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePaddingTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {2, 2};
|
||||||
|
padding = {1, 0}; // Non-square padding
|
||||||
|
|
||||||
|
input = {// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
|
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
|
||||||
|
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.298f, 0.19675f, 0.3315f, 0.43775f, 0.298f, 0.19925f,
|
||||||
|
0.348f, 0.045f, 0.34075f, 0.43275f, 0.33775f, 0.3955f};
|
||||||
|
|
||||||
runTest();
|
runTest();
|
||||||
}
|
}
|
||||||
@@ -103,6 +103,15 @@ def gen_avg_pool_non_square_stride_test_result():
|
|||||||
print_cpp_vector(output)
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_avg_pool_non_square_padding_test_result():
|
||||||
|
|
||||||
|
input = _get_pool_input()
|
||||||
|
|
||||||
|
output = torch.nn.AvgPool2d(kernel_size=2, stride=2, padding=(1, 0))(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
print("Generating test results...")
|
print("Generating test results...")
|
||||||
@@ -125,3 +134,5 @@ if __name__ == "__main__":
|
|||||||
gen_avg_non_square_pool_test_result()
|
gen_avg_non_square_pool_test_result()
|
||||||
print("Avg pool non square stride test:")
|
print("Avg pool non square stride test:")
|
||||||
gen_avg_pool_non_square_stride_test_result()
|
gen_avg_pool_non_square_stride_test_result()
|
||||||
|
print("Avg pool non square padding test:")
|
||||||
|
gen_avg_pool_non_square_padding_test_result()
|
||||||
|
|||||||
Reference in New Issue
Block a user