mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Format source code using clang-format
This commit is contained in:
@@ -1,16 +1,25 @@
|
||||
#include "dense.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "activations.cuh"
|
||||
#include <cstdlib>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
|
||||
Layers::Dense::Dense(int inputSize, int outputSize, std::string activation, cublasHandle_t cublasHandle)
|
||||
: inputSize(inputSize), outputSize(outputSize), cublasHandle(cublasHandle), activation(activation) {
|
||||
#include "activations.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "dense.cuh"
|
||||
|
||||
Layers::Dense::Dense(
|
||||
int inputSize,
|
||||
int outputSize,
|
||||
std::string activation,
|
||||
cublasHandle_t cublasHandle
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
outputSize(outputSize),
|
||||
cublasHandle(cublasHandle),
|
||||
activation(activation) {
|
||||
// Allocate memory for weights and biases
|
||||
weights.resize(outputSize * inputSize);
|
||||
biases.resize(outputSize);
|
||||
@@ -19,10 +28,12 @@ Layers::Dense::Dense(int inputSize, int outputSize, std::string activation, cubl
|
||||
initializeBiases();
|
||||
|
||||
d_weights = nullptr;
|
||||
d_biases = nullptr;
|
||||
d_biases = nullptr;
|
||||
|
||||
// Allocate GPU memory for weights and biases
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize));
|
||||
CUDA_CHECK(
|
||||
cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize)
|
||||
);
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * outputSize));
|
||||
|
||||
toCuda();
|
||||
@@ -44,30 +55,47 @@ void Layers::Dense::initializeBiases() {
|
||||
|
||||
void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 1.0f;
|
||||
const float beta = 1.0f;
|
||||
|
||||
CUBLAS_CHECK(cublasSgemv(cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights, inputSize, d_input, 1, &beta, d_output, 1));
|
||||
CUBLAS_CHECK(cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1));
|
||||
CUBLAS_CHECK(cublasSgemv(
|
||||
cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights,
|
||||
inputSize, d_input, 1, &beta, d_output, 1
|
||||
));
|
||||
CUBLAS_CHECK(
|
||||
cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1)
|
||||
);
|
||||
|
||||
int threadsPerBlock = 256;
|
||||
int blocksPerGrid = (outputSize + threadsPerBlock - 1) / threadsPerBlock;
|
||||
int blocksPerGrid = (outputSize + threadsPerBlock - 1) / threadsPerBlock;
|
||||
|
||||
if (activation == "sigmoid") {
|
||||
sigmoid_kernel<<<blocksPerGrid, threadsPerBlock>>>(d_output, d_output, outputSize);
|
||||
sigmoid_kernel<<<blocksPerGrid, threadsPerBlock>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
} else if (activation == "relu") {
|
||||
relu_kernel<<<blocksPerGrid, threadsPerBlock>>>(d_output, d_output, outputSize);
|
||||
relu_kernel<<<blocksPerGrid, threadsPerBlock>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
} else {
|
||||
linear_kernel<<<blocksPerGrid, threadsPerBlock>>>(d_output, d_output, outputSize);
|
||||
linear_kernel<<<blocksPerGrid, threadsPerBlock>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Layers::Dense::toCuda() {
|
||||
CUBLAS_CHECK(cublasSetMatrix(outputSize, inputSize, sizeof(float), weights.data(), outputSize, d_weights, outputSize));
|
||||
CUBLAS_CHECK(cublasSetVector(biases.size(), sizeof(float), biases.data(), 1, d_biases, 1));
|
||||
CUBLAS_CHECK(cublasSetMatrix(
|
||||
outputSize, inputSize, sizeof(float), weights.data(), outputSize,
|
||||
d_weights, outputSize
|
||||
));
|
||||
CUBLAS_CHECK(cublasSetVector(
|
||||
biases.size(), sizeof(float), biases.data(), 1, d_biases, 1
|
||||
));
|
||||
}
|
||||
|
||||
void Layers::Dense::setWeights(const std::vector<std::vector<float>>& weights_input) {
|
||||
void Layers::Dense::setWeights(
|
||||
const std::vector<std::vector<float>>& weights_input
|
||||
) {
|
||||
int numWeights = inputSize * outputSize;
|
||||
|
||||
if (weights.size() != numWeights) {
|
||||
@@ -77,7 +105,7 @@ void Layers::Dense::setWeights(const std::vector<std::vector<float>>& weights_in
|
||||
|
||||
for (int j = 0; j < inputSize; ++j) {
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
int idx = IDX2C(i, j, outputSize);
|
||||
int idx = IDX2C(i, j, outputSize);
|
||||
weights[idx] = weights_input[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user