mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Rename alexnet main
This commit is contained in:
144
examples/alexnet/alexnet.cpp
Normal file
144
examples/alexnet/alexnet.cpp
Normal file
@@ -0,0 +1,144 @@
|
||||
#include <cudanet.cuh>
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
std::vector<float>
|
||||
readAndNormalizeImage(const std::string &imagePath, int width, int height) {
|
||||
// Read the image using OpenCV
|
||||
cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
|
||||
|
||||
// Resize and normalize the image
|
||||
cv::resize(image, image, cv::Size(width, height));
|
||||
image.convertTo(image, CV_32FC3, 1.0 / 255.0);
|
||||
|
||||
// Normalize the image https://pytorch.org/hub/pytorch_vision_alexnet/
|
||||
cv::Mat mean(image.size(), CV_32FC3, cv::Scalar(0.485, 0.456, 0.406));
|
||||
cv::Mat std(image.size(), CV_32FC3, cv::Scalar(0.229, 0.224, 0.225));
|
||||
cv::subtract(image, mean, image);
|
||||
cv::divide(image, std, image);
|
||||
|
||||
// Convert the 3D image matrix to a 1D array of floats
|
||||
std::vector<float> imageData;
|
||||
for (int c = 0; c < image.channels(); ++c) {
|
||||
for (int i = 0; i < image.rows; ++i) {
|
||||
for (int j = 0; j < image.cols; ++j) {
|
||||
imageData.push_back(image.at<cv::Vec3f>(i, j)[c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return imageData;
|
||||
}
|
||||
|
||||
CUDANet::Model *createModel(
|
||||
const int inputSize,
|
||||
const int inputChannels,
|
||||
const int outputSize
|
||||
) {
|
||||
CUDANet::Model *model =
|
||||
new CUDANet::Model(inputSize, inputChannels, outputSize);
|
||||
|
||||
// Block 1
|
||||
CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d(
|
||||
inputSize, inputChannels, 11, 4, 64, 2,
|
||||
CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("features.0", conv1); // Match pytorch naming
|
||||
CUDANet::Layers::MaxPooling2D *pool1 = new CUDANet::Layers::MaxPooling2D(
|
||||
56, 64, 3, 2, CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
model->addLayer("pool1", pool1);
|
||||
|
||||
// Block 2
|
||||
CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d(
|
||||
27, 64, 5, 1, 192, 2, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("features.3", conv2);
|
||||
CUDANet::Layers::MaxPooling2D *pool2 = new CUDANet::Layers::MaxPooling2D(
|
||||
27, 192, 3, 2, CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
model->addLayer("pool2", pool2);
|
||||
|
||||
// Block 3
|
||||
CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d(
|
||||
13, 192, 3, 1, 384, 1, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("features.6", conv3);
|
||||
|
||||
// Block 4
|
||||
CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d(
|
||||
13, 384, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("features.8", conv4);
|
||||
|
||||
// Block 5
|
||||
CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d(
|
||||
13, 256, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("features.10", conv5);
|
||||
CUDANet::Layers::MaxPooling2D *pool5 = new CUDANet::Layers::MaxPooling2D(
|
||||
13, 256, 3, 2, CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
model->addLayer("pool5", pool5);
|
||||
|
||||
// Classifier
|
||||
CUDANet::Layers::Dense *dense1 = new CUDANet::Layers::Dense(
|
||||
6 * 6 * 256, 4096, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("classifier.1", dense1);
|
||||
|
||||
CUDANet::Layers::Dense *dense2 = new CUDANet::Layers::Dense(
|
||||
4096, 4096, CUDANet::Layers::ActivationType::RELU
|
||||
);
|
||||
model->addLayer("classifier.4", dense2);
|
||||
|
||||
CUDANet::Layers::Dense *dense3 = new CUDANet::Layers::Dense(
|
||||
4096, 1000, CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
model->addLayer("classifier.6", dense3);
|
||||
|
||||
return model;
|
||||
}
|
||||
|
||||
int main(int argc, const char *const argv[]) {
|
||||
if (argc != 3) {
|
||||
std::cerr << "Usage: " << argv[0] << "<model_weights_path> <image_path>"
|
||||
<< std::endl;
|
||||
return 1; // Return error code indicating incorrect usage
|
||||
}
|
||||
|
||||
// Path to the image file
|
||||
std::string modelWeightsPath = argv[1];
|
||||
std::string imagePath = argv[2];
|
||||
|
||||
const int inputSize = 227;
|
||||
const int inputChannels = 3;
|
||||
const int outputSize = 1000;
|
||||
|
||||
CUDANet::Model *model = createModel(inputSize, inputChannels, outputSize);
|
||||
|
||||
model->validate();
|
||||
|
||||
model->loadWeights(modelWeightsPath);
|
||||
|
||||
// Read and normalize the image
|
||||
std::vector<float> imageData =
|
||||
readAndNormalizeImage(imagePath, inputSize, inputSize);
|
||||
|
||||
// Print the size of the image data
|
||||
float *output = model->predict(imageData.data());
|
||||
|
||||
// Get max index
|
||||
int maxIndex = 0;
|
||||
for (int i = 0; i < outputSize; i++) {
|
||||
if (output[i] > output[maxIndex]) {
|
||||
maxIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
std::string classLabel = CUDANet::Utils::IMAGENET_CLASS_MAP.at(maxIndex);
|
||||
|
||||
std::cout << "Prediction: " << maxIndex << " " << classLabel << std::endl;
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user