Implement model test

This commit is contained in:
2024-04-13 13:31:29 +02:00
parent 18522c2dea
commit 457e0f669f
2 changed files with 108 additions and 41 deletions

88
tools/model_test.py Normal file
View File

@@ -0,0 +1,88 @@
import torch
import utils
class TestModel(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.conv1 = torch.nn.Conv2d(
in_channels=2,
out_channels=2,
kernel_size=3,
stride=1,
padding=0,
bias=False
)
self.maxpool1 = torch.nn.MaxPool2d(
kernel_size=2,
stride=2
)
self.activation = torch.nn.ReLU()
self.linear = torch.nn.Linear(
in_features=8,
out_features=3,
bias=False
)
self.softmax = torch.nn.Softmax(dim=0)
def set_weights(self):
conv2d_weights = torch.tensor([
0.18313, 0.53363, 0.39527, 0.27575, 0.3433, 0.41746,
0.16831, 0.61693, 0.54599, 0.99692, 0.77127, 0.25146,
0.4206, 0.16291, 0.93484, 0.79765, 0.74982, 0.78336,
0.6386, 0.87744, 0.33587, 0.9691, 0.68437, 0.65098,
0.48153, 0.97546, 0.8026, 0.36689, 0.98152, 0.37351,
0.68407, 0.2684, 0.2855, 0.76195, 0.67828, 0.603
]).reshape(2, 2, 3, 3)
self.conv1.weight = torch.nn.Parameter(conv2d_weights)
linear_weights = torch.tensor([
0.36032, 0.33115, 0.02948,
0.09802, 0.45072, 0.56266,
0.43514, 0.80946, 0.43439,
0.90916, 0.08605, 0.07473,
0.94788, 0.66168, 0.34927,
0.09464, 0.61963, 0.73775,
0.51559, 0.81916, 0.64915,
0.03934, 0.87608, 0.68364,
]).reshape(3, 8)
self.linear.weight = torch.nn.Parameter(linear_weights)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.activation(x)
x = torch.flatten(x)
x = self.linear(x)
x = self.softmax(x)
return x
if __name__ == "__main__":
model = TestModel()
model.set_weights()
input = torch.tensor([
0.12762, 0.99056, 0.77565, 0.29058, 0.29787, 0.58415, 0.20484,
0.05415, 0.60593, 0.3162, 0.08198, 0.92749, 0.72392, 0.91786,
0.65266, 0.80908, 0.53389, 0.36069, 0.18614, 0.52381, 0.08525,
0.43054, 0.3355, 0.96587, 0.98194, 0.71336, 0.78392, 0.50648,
0.40355, 0.31863, 0.54686, 0.1836, 0.77171, 0.01262, 0.41108,
0.53467, 0.3553, 0.42808, 0.45798, 0.29958, 0.3923, 0.98277,
0.02033, 0.99868, 0.90584, 0.57554, 0.15957, 0.91273, 0.38901,
0.27097, 0.64788, 0.84272, 0.42984, 0.07466, 0.53658, 0.83388,
0.28232, 0.48046, 0.85626, 0.04721, 0.36139, 0.6123, 0.56991,
0.84854, 0.61415, 0.2466, 0.20017, 0.78952, 0.93797, 0.27884,
0.30514, 0.23521
]).reshape(2, 6, 6)
# input = torch.rand(2, 6, 6)
out = model(input)
utils.print_cpp_vector(out)