mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Abstract activation and implement softmax
This commit is contained in:
@@ -8,21 +8,21 @@
|
||||
class Conv2dTest : public ::testing::Test {
|
||||
protected:
|
||||
CUDANet::Layers::Conv2d commonTestSetup(
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
CUDANet::Layers::Padding padding,
|
||||
int numFilters,
|
||||
CUDANet::Layers::Activation activation,
|
||||
std::vector<float>& input,
|
||||
float* kernels,
|
||||
float*& d_input
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
int numFilters,
|
||||
CUDANet::Layers::Padding padding,
|
||||
CUDANet::Layers::ActivationType activationType,
|
||||
std::vector<float>& input,
|
||||
float* kernels,
|
||||
float*& d_input
|
||||
) {
|
||||
// Create Conv2d layer
|
||||
CUDANet::Layers::Conv2d conv2d(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation
|
||||
inputSize, inputChannels, kernelSize, stride, numFilters, padding,
|
||||
activationType
|
||||
);
|
||||
|
||||
conv2d.setWeights(kernels);
|
||||
@@ -53,13 +53,14 @@ class Conv2dTest : public ::testing::Test {
|
||||
};
|
||||
|
||||
TEST_F(Conv2dTest, SimpleTest) {
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
int stride = 1;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::VALID;
|
||||
int numFilters = 1;
|
||||
CUDANet::Layers::Activation activation = CUDANet::Layers::Activation::NONE;
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
int stride = 1;
|
||||
int numFilters = 1;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::VALID;
|
||||
CUDANet::Layers::ActivationType activationType =
|
||||
CUDANet::Layers::ActivationType::NONE;
|
||||
|
||||
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
||||
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
||||
@@ -75,8 +76,8 @@ TEST_F(Conv2dTest, SimpleTest) {
|
||||
float* d_output;
|
||||
|
||||
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels.data(), d_input
|
||||
inputSize, inputChannels, kernelSize, stride, numFilters, padding,
|
||||
activationType, input, kernels.data(), d_input
|
||||
);
|
||||
|
||||
int outputSize = (inputSize - kernelSize) / stride + 1;
|
||||
@@ -102,13 +103,14 @@ TEST_F(Conv2dTest, SimpleTest) {
|
||||
}
|
||||
|
||||
TEST_F(Conv2dTest, PaddedTest) {
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::SAME;
|
||||
int numFilters = 2;
|
||||
CUDANet::Layers::Activation activation = CUDANet::Layers::Activation::NONE;
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
int numFilters = 2;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::SAME;
|
||||
CUDANet::Layers::ActivationType activationType =
|
||||
CUDANet::Layers::ActivationType::NONE;
|
||||
|
||||
// clang-format off
|
||||
std::vector<float> input = {
|
||||
@@ -164,8 +166,8 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
float* d_output;
|
||||
|
||||
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels.data(), d_input
|
||||
inputSize, inputChannels, kernelSize, stride, numFilters, padding,
|
||||
activationType, input, kernels.data(), d_input
|
||||
);
|
||||
|
||||
EXPECT_EQ(inputSize, conv2d.getOutputSize());
|
||||
@@ -203,13 +205,14 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
}
|
||||
|
||||
TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
int inputSize = 5;
|
||||
int inputChannels = 2;
|
||||
int kernelSize = 3;
|
||||
int stride = 2;
|
||||
int numFilters = 2;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::SAME;
|
||||
CUDANet::Layers::Activation activation = CUDANet::Layers::Activation::RELU;
|
||||
int inputSize = 5;
|
||||
int inputChannels = 2;
|
||||
int kernelSize = 3;
|
||||
int stride = 2;
|
||||
int numFilters = 2;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::SAME;
|
||||
CUDANet::Layers::ActivationType activationType =
|
||||
CUDANet::Layers::ActivationType::RELU;
|
||||
|
||||
// clang-format off
|
||||
std::vector<float> input = {
|
||||
@@ -250,8 +253,8 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
float* d_output;
|
||||
|
||||
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels.data(), d_input
|
||||
inputSize, inputChannels, kernelSize, stride, numFilters, padding,
|
||||
activationType, input, kernels.data(), d_input
|
||||
);
|
||||
|
||||
EXPECT_EQ(inputSize, conv2d.getOutputSize());
|
||||
|
||||
Reference in New Issue
Block a user