mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Implement Inception block D
This commit is contained in:
@@ -39,6 +39,11 @@ class BasicConv2d : public CUDANet::Module {
|
||||
addLayer(prefix + ".bn", batchNorm);
|
||||
}
|
||||
|
||||
~BasicConv2d() {
|
||||
delete conv;
|
||||
delete batchNorm;
|
||||
}
|
||||
|
||||
float *forward(const float *d_input) {
|
||||
float *d_output = conv->forward(d_input);
|
||||
return batchNorm->forward(d_output);
|
||||
@@ -123,6 +128,20 @@ class InceptionA : public CUDANet::Module {
|
||||
);
|
||||
}
|
||||
|
||||
~InceptionA() {
|
||||
delete branch1x1;
|
||||
delete branch5x5_1;
|
||||
delete branch5x5_2;
|
||||
delete branch3x3dbl_1;
|
||||
delete branch3x3dbl_2;
|
||||
delete branch3x3dbl_3;
|
||||
delete branchPool_1;
|
||||
delete branchPool_2;
|
||||
delete concat_1;
|
||||
delete concat_2;
|
||||
delete concat_3;
|
||||
}
|
||||
|
||||
float *forward(const float *d_input) {
|
||||
float *d_branch1x1_out = branch1x1->forward(d_input);
|
||||
|
||||
@@ -210,6 +229,16 @@ class InceptionB : public CUDANet::Module {
|
||||
);
|
||||
}
|
||||
|
||||
~InceptionB() {
|
||||
delete branch3x3;
|
||||
delete branch3x3dbl_1;
|
||||
delete branch3x3dbl_2;
|
||||
delete branch3x3dbl_3;
|
||||
delete branchPool;
|
||||
delete concat_1;
|
||||
delete concat_2;
|
||||
}
|
||||
|
||||
float *forward(const float *d_input) {
|
||||
float *d_branch3x3_out = branch3x3->forward(d_input);
|
||||
|
||||
@@ -314,6 +343,23 @@ class InceptionC : public CUDANet::Module {
|
||||
);
|
||||
}
|
||||
|
||||
~InceptionC() {
|
||||
delete branch1x1;
|
||||
delete branch7x7_1;
|
||||
delete branch7x7_2;
|
||||
delete branch7x7_3;
|
||||
delete branch7x7dbl_1;
|
||||
delete branch7x7dbl_2;
|
||||
delete branch7x7dbl_3;
|
||||
delete branch7x7dbl_4;
|
||||
delete branch7x7dbl_5;
|
||||
delete branchPool_1;
|
||||
delete branchPool_2;
|
||||
delete concat_1;
|
||||
delete concat_2;
|
||||
delete concat_3;
|
||||
}
|
||||
|
||||
float *forward(const float *d_input) {
|
||||
float *branch1x1_output = branch1x1->forward(d_input);
|
||||
|
||||
@@ -359,4 +405,112 @@ class InceptionC : public CUDANet::Module {
|
||||
CUDANet::Layers::Concat *concat_1;
|
||||
CUDANet::Layers::Concat *concat_2;
|
||||
CUDANet::Layers::Concat *concat_3;
|
||||
};
|
||||
|
||||
class InceptionD : public CUDANet::Module {
|
||||
public:
|
||||
InceptionD(
|
||||
const shape2d inputSize,
|
||||
const int inputChannels,
|
||||
const std::string &prefix
|
||||
)
|
||||
: inputSize(inputSize), inputChannels(inputChannels) {
|
||||
// Branch 3x3
|
||||
branch3x3_1 = new BasicConv2d(
|
||||
inputSize, inputChannels, 192, {1, 1}, {1, 1}, {0, 0},
|
||||
prefix + "branch3x3"
|
||||
);
|
||||
addLayer("", branch3x3_1);
|
||||
branch3x3_2 = new BasicConv2d(
|
||||
inputSize, 192, 320, {3, 3}, {2, 2}, {0, 0},
|
||||
prefix + "branch3x3_2"
|
||||
);
|
||||
addLayer("", branch3x3_2);
|
||||
|
||||
// Branch 7x7x3
|
||||
branch7x7x3_1 = new BasicConv2d(
|
||||
inputSize, inputChannels, 192, {1, 1}, {1, 1}, {0, 0},
|
||||
prefix + "branch7x7x3_1"
|
||||
);
|
||||
addLayer("", branch7x7x3_1);
|
||||
branch7x7x3_2 = new BasicConv2d(
|
||||
inputSize, 192, 192, {1, 7}, {1, 1}, {0, 3},
|
||||
prefix + "branch7x7x3_2"
|
||||
);
|
||||
addLayer("", branch7x7x3_2);
|
||||
branch7x7x3_3 = new BasicConv2d(
|
||||
inputSize, 192, 192, {7, 1}, {1, 1}, {3, 0},
|
||||
prefix + "branch7x7x3_3"
|
||||
);
|
||||
addLayer("", branch7x7x3_3);
|
||||
branch7x7x3_4 = new BasicConv2d(
|
||||
inputSize, 192, 192, {3, 3}, {2, 2}, {0, 0},
|
||||
prefix + "branch7x7x3_4"
|
||||
);
|
||||
addLayer("", branch7x7x3_4);
|
||||
|
||||
// Branch Pool
|
||||
branchPool = new CUDANet::Layers::MaxPooling2d(
|
||||
inputSize, 192, {3, 3}, {2, 2}, {0, 0},
|
||||
CUDANet::Layers::ActivationType::NONE
|
||||
);
|
||||
addLayer("", branchPool);
|
||||
|
||||
// Concat
|
||||
concat_1 = new CUDANet::Layers::Concat(
|
||||
branch3x3_2->getOutputSize(),
|
||||
branch7x7x3_4->getOutputSize()
|
||||
);
|
||||
concat_2 = new CUDANet::Layers::Concat(
|
||||
concat_1->getOutputSize(),
|
||||
branchPool->getOutputSize()
|
||||
);
|
||||
}
|
||||
|
||||
~InceptionD() {
|
||||
delete branch3x3_1;
|
||||
delete branch3x3_2;
|
||||
delete branch7x7x3_1;
|
||||
delete branch7x7x3_2;
|
||||
delete branch7x7x3_3;
|
||||
delete branch7x7x3_4;
|
||||
delete branchPool;
|
||||
delete concat_1;
|
||||
delete concat_2;
|
||||
}
|
||||
|
||||
float *forward(float *d_input) {
|
||||
float *branch1x1_output = branch3x3_1->forward(d_input);
|
||||
branch1x1_output = branch3x3_2->forward(branch1x1_output);
|
||||
|
||||
float *branch7x7_output = branch7x7x3_1->forward(d_input);
|
||||
branch7x7_output = branch7x7x3_2->forward(branch7x7_output);
|
||||
branch7x7_output = branch7x7x3_3->forward(branch7x7_output);
|
||||
branch7x7_output = branch7x7x3_4->forward(branch7x7_output);
|
||||
|
||||
float *branchPool_output = branchPool->forward(d_input);
|
||||
|
||||
float *d_output = concat_1->forward(branch1x1_output, branch7x7_output);
|
||||
d_output = concat_2->forward(d_output, branchPool_output);
|
||||
|
||||
return d_output;
|
||||
}
|
||||
|
||||
private:
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
|
||||
BasicConv2d *branch3x3_1;
|
||||
BasicConv2d *branch3x3_2;
|
||||
|
||||
BasicConv2d *branch7x7x3_1;
|
||||
BasicConv2d *branch7x7x3_2;
|
||||
BasicConv2d *branch7x7x3_3;
|
||||
BasicConv2d *branch7x7x3_4;
|
||||
|
||||
CUDANet::Layers::MaxPooling2d *branchPool;
|
||||
|
||||
CUDANet::Layers::Concat *concat_1;
|
||||
CUDANet::Layers::Concat *concat_2;
|
||||
|
||||
};
|
||||
@@ -9,11 +9,11 @@ namespace CUDANet::Layers {
|
||||
class MaxPooling2d : public SequentialLayer, public TwoDLayer {
|
||||
public:
|
||||
MaxPooling2d(
|
||||
shape2d inputSize,
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
);
|
||||
~MaxPooling2d();
|
||||
@@ -38,7 +38,7 @@ class MaxPooling2d : public SequentialLayer, public TwoDLayer {
|
||||
|
||||
private:
|
||||
shape2d inputSize;
|
||||
int nChannels;
|
||||
int nChannels;
|
||||
shape2d poolingSize;
|
||||
shape2d stride;
|
||||
shape2d padding;
|
||||
|
||||
Reference in New Issue
Block a user