Add Alexnet README

This commit is contained in:
2024-04-22 21:59:08 +02:00
parent 9a9b034ce5
commit 157d4c736b
2 changed files with 53 additions and 19 deletions

View File

@@ -0,0 +1,28 @@
# AlexNet
AlexNet Inference on CUDANet
## Usage
1. Export pytorch AlexNet weight pretrained on ImageNet (requires pytorch and torchvision):
```sh
python alexnet.py
```
2. Follow the instructions from repository root to build CUDANet library.
3. Build AlexNet
```sh
mkdir build
cd build
cmake -S ..
make
```
4. Run AlexNet inference
```sh
alexnet ../alexnet_weights.bin ../image.jpg
```

View File

@@ -1,14 +1,14 @@
#include <conv2d.cuh>
#include <dense.cuh>
#include <iostream> #include <iostream>
#include <max_pooling.cuh>
#include <model.hpp>
#include <opencv2/opencv.hpp>
#include <string> #include <string>
#include <vector> #include <vector>
#include <opencv2/opencv.hpp>
#include <model.hpp> std::vector<float>
#include <conv2d.cuh> readAndNormalizeImage(const std::string &imagePath, int width, int height) {
#include <max_pooling.cuh>
#include <dense.cuh>
std::vector<float> readAndNormalizeImage(const std::string& imagePath, int width, int height) {
// Read the image using OpenCV // Read the image using OpenCV
cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR); cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
@@ -35,13 +35,18 @@ std::vector<float> readAndNormalizeImage(const std::string& imagePath, int width
return imageData; return imageData;
} }
CUDANet::Model* createModel(const int inputSize, const int inputChannels, const int outputSize) { CUDANet::Model *createModel(
const int inputSize,
const int inputChannels,
const int outputSize
) {
CUDANet::Model *model = CUDANet::Model *model =
new CUDANet::Model(inputSize, inputChannels, outputSize); new CUDANet::Model(inputSize, inputChannels, outputSize);
// Block 1 // Block 1
CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d( CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d(
inputSize, inputChannels, 11, 4, 64, 2, CUDANet::Layers::ActivationType::RELU inputSize, inputChannels, 11, 4, 64, 2,
CUDANet::Layers::ActivationType::RELU
); );
model->addLayer("features.0", conv1); // Match pytorch naming model->addLayer("features.0", conv1); // Match pytorch naming
CUDANet::Layers::MaxPooling2D *pool1 = new CUDANet::Layers::MaxPooling2D( CUDANet::Layers::MaxPooling2D *pool1 = new CUDANet::Layers::MaxPooling2D(
@@ -100,10 +105,10 @@ CUDANet::Model* createModel(const int inputSize, const int inputChannels, const
return model; return model;
} }
int main(int argc, const char* const argv[]) { int main(int argc, const char *const argv[]) {
if (argc != 3) { if (argc != 3) {
std::cerr << "Usage: " << argv[0] << "<model_weights_path> <image_path>" << std::endl; std::cerr << "Usage: " << argv[0] << "<model_weights_path> <image_path>"
<< std::endl;
return 1; // Return error code indicating incorrect usage return 1; // Return error code indicating incorrect usage
} }
@@ -122,10 +127,11 @@ int main(int argc, const char* const argv[]) {
model->loadWeights(modelWeightsPath); model->loadWeights(modelWeightsPath);
// Read and normalize the image // Read and normalize the image
std::vector<float> imageData = readAndNormalizeImage(imagePath, inputSize, inputSize); std::vector<float> imageData =
readAndNormalizeImage(imagePath, inputSize, inputSize);
// Print the size of the image data // Print the size of the image data
float* output = model->predict(imageData.data()); float *output = model->predict(imageData.data());
// Get max index // Get max index
int maxIndex = 0; int maxIndex = 0;