mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
Add non square pooling and batch norm tests
This commit is contained in:
@@ -5,36 +5,39 @@
|
|||||||
|
|
||||||
#include "avg_pooling.cuh"
|
#include "avg_pooling.cuh"
|
||||||
|
|
||||||
TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
class AvgPoolingLayerTest : public ::testing::Test {
|
||||||
dim2d inputSize = {4, 4};
|
protected:
|
||||||
int nChannels = 2;
|
dim2d inputSize;
|
||||||
dim2d poolingSize = {2, 2};
|
int nChannels;
|
||||||
dim2d stride = {2, 2};
|
dim2d poolingSize;
|
||||||
|
dim2d stride;
|
||||||
|
std::vector<float> input;
|
||||||
|
std::vector<float> expected;
|
||||||
|
|
||||||
|
float *d_input;
|
||||||
|
float *d_output;
|
||||||
|
CUDANet::Layers::AvgPooling2d *avgPoolingLayer;
|
||||||
|
|
||||||
|
virtual void SetUp() override {
|
||||||
|
d_input = nullptr;
|
||||||
|
d_output = nullptr;
|
||||||
|
avgPoolingLayer = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void TearDown() override {
|
||||||
|
if (d_input) {
|
||||||
|
cudaFree(d_input);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void runTest() {
|
||||||
cudaError_t cudaStatus;
|
cudaError_t cudaStatus;
|
||||||
|
|
||||||
std::vector<float> input = {
|
avgPoolingLayer = new CUDANet::Layers::AvgPooling2d(
|
||||||
// clang-format off
|
|
||||||
// Channel 0
|
|
||||||
0.573f, 0.619f, 0.732f, 0.055f,
|
|
||||||
0.243f, 0.316f, 0.573f, 0.619f,
|
|
||||||
0.712f, 0.055f, 0.243f, 0.316f,
|
|
||||||
0.573f, 0.619f, 0.742f, 0.055f,
|
|
||||||
// Channel 1
|
|
||||||
0.473f, 0.919f, 0.107f, 0.073f,
|
|
||||||
0.073f, 0.362f, 0.973f, 0.059f,
|
|
||||||
0.473f, 0.455f, 0.283f, 0.416f,
|
|
||||||
0.532f, 0.819f, 0.732f, 0.850f
|
|
||||||
// clang-format on
|
|
||||||
};
|
|
||||||
|
|
||||||
CUDANet::Layers::AvgPooling2d avgPoolingLayer(
|
|
||||||
inputSize, nChannels, poolingSize, stride,
|
inputSize, nChannels, poolingSize, stride,
|
||||||
CUDANet::Layers::ActivationType::NONE
|
CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
|
|
||||||
float *d_input;
|
|
||||||
|
|
||||||
cudaStatus = cudaMalloc(
|
cudaStatus = cudaMalloc(
|
||||||
(void **)&d_input,
|
(void **)&d_input,
|
||||||
sizeof(float) * inputSize.first * inputSize.second * nChannels
|
sizeof(float) * inputSize.first * inputSize.second * nChannels
|
||||||
@@ -48,9 +51,9 @@ TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
|||||||
);
|
);
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
float *d_output = avgPoolingLayer.forward(d_input);
|
d_output = avgPoolingLayer->forward(d_input);
|
||||||
|
|
||||||
int outputSize = avgPoolingLayer.getOutputSize();
|
int outputSize = avgPoolingLayer->getOutputSize();
|
||||||
|
|
||||||
std::vector<float> output(outputSize);
|
std::vector<float> output(outputSize);
|
||||||
cudaStatus = cudaMemcpy(
|
cudaStatus = cudaMemcpy(
|
||||||
@@ -59,13 +62,98 @@ TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
|||||||
);
|
);
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
std::vector<float> expected = {0.43775f, 0.49475f, 0.48975f, 0.339f,
|
|
||||||
0.45675f, 0.303f, 0.56975f, 0.57025f};
|
|
||||||
|
|
||||||
for (int i = 0; i < output.size(); ++i) {
|
for (int i = 0; i < output.size(); ++i) {
|
||||||
EXPECT_NEAR(expected[i], output[i], 1e-4);
|
EXPECT_NEAR(expected[i], output[i], 1e-4);
|
||||||
}
|
}
|
||||||
|
|
||||||
cudaStatus = cudaFree(d_input);
|
delete avgPoolingLayer;
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {2, 2};
|
||||||
|
|
||||||
|
input = {
|
||||||
|
// clang-format off
|
||||||
|
// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f,
|
||||||
|
0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
|
0.712f, 0.055f, 0.243f, 0.316f,
|
||||||
|
0.573f, 0.619f, 0.742f, 0.055f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f,
|
||||||
|
0.073f, 0.362f, 0.973f, 0.059f,
|
||||||
|
0.473f, 0.455f, 0.283f, 0.416f,
|
||||||
|
0.532f, 0.819f, 0.732f, 0.850f
|
||||||
|
// clang-format on
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.43775f, 0.49475f, 0.48975f, 0.339f,
|
||||||
|
0.45675f, 0.303f, 0.56975f, 0.57025f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareInputTest) {
|
||||||
|
inputSize = {4, 6}; // Non-square input
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {2, 2};
|
||||||
|
|
||||||
|
input = {// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
|
||||||
|
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
|
||||||
|
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
|
||||||
|
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
|
||||||
|
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.43775f, 0.49475f, 0.4005f, 0.48975f, 0.339f, 0.654f,
|
||||||
|
0.45675f, 0.303f, 0.654f, 0.56975f, 0.57025f, 0.555f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePoolingTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 3}; // Non-square pooling
|
||||||
|
stride = {2, 2};
|
||||||
|
|
||||||
|
input = {// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
|
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
|
||||||
|
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.50933f, 0.49067f, 0.4845f, 0.549f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareStrideTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {1, 2}; // Non-square stride
|
||||||
|
|
||||||
|
input = {// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
|
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
|
||||||
|
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.43775f, 0.49475f, 0.3315f, 0.43775f, 0.48975f, 0.339f,
|
||||||
|
0.45675f, 0.303f, 0.34075f, 0.43275f, 0.56975f, 0.57025f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
}
|
}
|
||||||
@@ -6,27 +6,80 @@
|
|||||||
#include "activation.cuh"
|
#include "activation.cuh"
|
||||||
#include "batch_norm.cuh"
|
#include "batch_norm.cuh"
|
||||||
|
|
||||||
TEST(BatchNormLayerTest, BatchNormSmallForwardTest) {
|
class BatchNormLayerTest : public ::testing::Test {
|
||||||
dim2d inputSize = {4, 4};
|
protected:
|
||||||
int nChannels = 2;
|
dim2d inputSize;
|
||||||
|
int nChannels;
|
||||||
|
std::vector<float> weights;
|
||||||
|
std::vector<float> biases;
|
||||||
|
std::vector<float> input;
|
||||||
|
std::vector<float> expected;
|
||||||
|
|
||||||
|
float *d_input;
|
||||||
|
float *d_output;
|
||||||
|
CUDANet::Layers::BatchNorm2d *batchNorm;
|
||||||
|
|
||||||
|
virtual void SetUp() override {
|
||||||
|
d_input = nullptr;
|
||||||
|
d_output = nullptr;
|
||||||
|
batchNorm = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void TearDown() override {
|
||||||
|
if (d_input) {
|
||||||
|
cudaFree(d_input);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void runTest() {
|
||||||
cudaError_t cudaStatus;
|
cudaError_t cudaStatus;
|
||||||
|
|
||||||
CUDANet::Layers::BatchNorm2d batchNorm(
|
batchNorm = new CUDANet::Layers::BatchNorm2d(
|
||||||
inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE
|
inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE
|
||||||
);
|
);
|
||||||
|
|
||||||
std::vector<float> weights = {0.63508f, 0.64903f};
|
batchNorm->setWeights(weights.data());
|
||||||
std::vector<float> biases = {0.25079f, 0.66841f};
|
batchNorm->setBiases(biases.data());
|
||||||
|
|
||||||
batchNorm.setWeights(weights.data());
|
|
||||||
batchNorm.setBiases(biases.data());
|
|
||||||
|
|
||||||
cudaStatus = cudaGetLastError();
|
cudaStatus = cudaGetLastError();
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
cudaStatus =
|
||||||
|
cudaMalloc((void **)&d_input, sizeof(float) * input.size());
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
cudaStatus = cudaMemcpy(
|
||||||
|
d_input, input.data(), sizeof(float) * input.size(),
|
||||||
|
cudaMemcpyHostToDevice
|
||||||
|
);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
d_output = batchNorm->forward(d_input);
|
||||||
|
|
||||||
|
std::vector<float> output(input.size());
|
||||||
|
cudaStatus = cudaMemcpy(
|
||||||
|
output.data(), d_output, sizeof(float) * output.size(),
|
||||||
|
cudaMemcpyDeviceToHost
|
||||||
|
);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
for (int i = 0; i < output.size(); ++i) {
|
||||||
|
EXPECT_NEAR(output[i], expected[i], 1e-5);
|
||||||
|
}
|
||||||
|
|
||||||
|
delete batchNorm;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(BatchNormLayerTest, BatchNormSmallForwardTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
|
||||||
|
weights = {0.63508f, 0.64903f};
|
||||||
|
biases = {0.25079f, 0.66841f};
|
||||||
|
|
||||||
// clang-format off
|
// clang-format off
|
||||||
std::vector<float> input = {
|
input = {
|
||||||
// Channel 0
|
// Channel 0
|
||||||
0.38899f, 0.80478f, 0.48836f, 0.97381f,
|
0.38899f, 0.80478f, 0.48836f, 0.97381f,
|
||||||
0.57508f, 0.60835f, 0.65467f, 0.00168f,
|
0.57508f, 0.60835f, 0.65467f, 0.00168f,
|
||||||
@@ -40,40 +93,44 @@ TEST(BatchNormLayerTest, BatchNormSmallForwardTest) {
|
|||||||
};
|
};
|
||||||
// clang-format on
|
// clang-format on
|
||||||
|
|
||||||
std::vector<float> output(input.size());
|
expected = {-0.06007f, 0.951f, 0.18157f, 1.36202f, 0.39244f, 0.47335f,
|
||||||
|
0.58598f, -1.00188f, 0.59576f, 0.79919f, -0.57001f, 0.70469f,
|
||||||
|
-0.62847f, -0.06578f, -0.43668f, 0.72952f, 0.37726f, 0.02088f,
|
||||||
|
0.35446f, 0.98092f, 1.39264f, 1.80686f, 1.67786f, 1.58318f,
|
||||||
|
-0.0269f, 0.26878f, 0.81411f, 0.09022f, 0.9126f, 0.71485f,
|
||||||
|
-0.08184f, -0.19131f};
|
||||||
|
|
||||||
float* d_input;
|
runTest();
|
||||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size());
|
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
||||||
|
|
||||||
cudaStatus = cudaMemcpy(
|
|
||||||
d_input, input.data(), sizeof(float) * input.size(),
|
|
||||||
cudaMemcpyHostToDevice
|
|
||||||
);
|
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
||||||
|
|
||||||
float* d_output = batchNorm.forward(d_input);
|
|
||||||
|
|
||||||
cudaStatus = cudaMemcpy(
|
|
||||||
output.data(), d_output, sizeof(float) * output.size(),
|
|
||||||
cudaMemcpyDeviceToHost
|
|
||||||
);
|
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
||||||
|
|
||||||
std::vector<float> expected = {-0.06007f, 0.951f, 0.18157f, 1.36202f,
|
|
||||||
0.39244f, 0.47335f, 0.58598f, -1.00188f,
|
|
||||||
0.59576f, 0.79919f, -0.57001f, 0.70469f,
|
|
||||||
-0.62847f, -0.06578f, -0.43668f, 0.72952f,
|
|
||||||
0.37726f, 0.02088f, 0.35446f, 0.98092f,
|
|
||||||
1.39264f, 1.80686f, 1.67786f, 1.58318f,
|
|
||||||
-0.0269f, 0.26878f, 0.81411f, 0.09022f,
|
|
||||||
0.9126f, 0.71485f, -0.08184f, -0.19131f};
|
|
||||||
|
|
||||||
// std::cout << "BatchNorm2d: " << std::endl;
|
|
||||||
for (int i = 0; i < output.size(); i++) {
|
|
||||||
EXPECT_NEAR(output[i], expected[i], 1e-5);
|
|
||||||
// std::cout << output[i] << " ";
|
|
||||||
}
|
}
|
||||||
// std::cout << std::endl;
|
|
||||||
cudaFree(d_input);
|
TEST_F(BatchNormLayerTest, BatchNormNonSquareInputTest) {
|
||||||
|
inputSize = {4, 6}; // Non-square input
|
||||||
|
nChannels = 2;
|
||||||
|
weights = {0.63508f, 0.64903f};
|
||||||
|
biases = {0.25079f, 0.66841f};
|
||||||
|
|
||||||
|
input = {// Channel 0
|
||||||
|
0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.21567f, 0.92312f,
|
||||||
|
0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.31567f, 0.71345f,
|
||||||
|
0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.12856f, 0.95645f,
|
||||||
|
0.15524f, 0.38664f, 0.23411f, 0.7137f, 0.26789f, 0.83412f,
|
||||||
|
// Channel 1
|
||||||
|
0.32473f, 0.15698f, 0.314f, 0.60888f, 0.23145f, 0.78945f, 0.80268f,
|
||||||
|
0.99766f, 0.93694f, 0.89237f, 0.61234f, 0.92314f, 0.13449f,
|
||||||
|
0.27367f, 0.53036f, 0.18962f, 0.45623f, 0.14523f, 0.57672f,
|
||||||
|
0.48364f, 0.10863f, 0.0571f, 0.78934f, 0.67545f
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {-0.05598f, 0.87495f, 0.1665f, 1.2534f, -0.44404f,
|
||||||
|
1.13991f, 0.36066f, 0.43515f, 0.53886f, -0.92315f,
|
||||||
|
-0.22014f, 0.67047f, 0.54786f, 0.73517f, -0.52552f,
|
||||||
|
0.64817f, -0.63907f, 1.21453f, -0.57934f, -0.06124f,
|
||||||
|
-0.40275f, 0.67103f, -0.32712f, 0.94064f, 0.28344f,
|
||||||
|
-0.08405f, 0.25993f, 0.90592f, 0.07909f, 1.30149f,
|
||||||
|
1.33047f, 1.7576f, 1.62459f, 1.52695f, 0.9135f,
|
||||||
|
1.59436f, -0.13331f, 0.17158f, 0.73391f, -0.01254f,
|
||||||
|
0.57151f, -0.10979f, 0.83546f, 0.63156f, -0.18996f,
|
||||||
|
-0.30285f, 1.30124f, 1.05175f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
}
|
}
|
||||||
@@ -82,7 +82,8 @@ TEST_F(Conv2dTest, SimpleTest) {
|
|||||||
);
|
);
|
||||||
|
|
||||||
int outputHeight = (inputSize.first - kernelSize.first) / stride.first + 1;
|
int outputHeight = (inputSize.first - kernelSize.first) / stride.first + 1;
|
||||||
int outputWidth = (inputSize.second - kernelSize.second) / stride.second + 1;
|
int outputWidth =
|
||||||
|
(inputSize.second - kernelSize.second) / stride.second + 1;
|
||||||
int outputSize = outputHeight * outputWidth * numFilters;
|
int outputSize = outputHeight * outputWidth * numFilters;
|
||||||
EXPECT_EQ(outputSize, conv2d.getOutputSize());
|
EXPECT_EQ(outputSize, conv2d.getOutputSize());
|
||||||
|
|
||||||
@@ -112,8 +113,11 @@ TEST_F(Conv2dTest, PaddedTest) {
|
|||||||
dim2d stride = {1, 1};
|
dim2d stride = {1, 1};
|
||||||
int numFilters = 2;
|
int numFilters = 2;
|
||||||
|
|
||||||
int paddingFirst = CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
|
int paddingFirst =
|
||||||
int paddingSecond = CUDANET_SAME_PADDING(inputSize.second, kernelSize.second, stride.second);
|
CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
|
||||||
|
int paddingSecond = CUDANET_SAME_PADDING(
|
||||||
|
inputSize.second, kernelSize.second, stride.second
|
||||||
|
);
|
||||||
dim2d paddingSize = {paddingFirst, paddingSecond};
|
dim2d paddingSize = {paddingFirst, paddingSecond};
|
||||||
|
|
||||||
CUDANet::Layers::ActivationType activationType =
|
CUDANet::Layers::ActivationType activationType =
|
||||||
@@ -177,7 +181,9 @@ TEST_F(Conv2dTest, PaddedTest) {
|
|||||||
activationType, input, kernels.data(), d_input
|
activationType, input, kernels.data(), d_input
|
||||||
);
|
);
|
||||||
|
|
||||||
EXPECT_EQ(inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize());
|
EXPECT_EQ(
|
||||||
|
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
|
||||||
|
);
|
||||||
|
|
||||||
d_output = conv2d.forward(d_input);
|
d_output = conv2d.forward(d_input);
|
||||||
|
|
||||||
@@ -214,11 +220,13 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
|||||||
dim2d stride = {2, 2};
|
dim2d stride = {2, 2};
|
||||||
int numFilters = 2;
|
int numFilters = 2;
|
||||||
|
|
||||||
int paddingFirst = CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
|
int paddingFirst =
|
||||||
int paddingSecond = CUDANET_SAME_PADDING(inputSize.second, kernelSize.second, stride.second);
|
CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
|
||||||
|
int paddingSecond = CUDANET_SAME_PADDING(
|
||||||
|
inputSize.second, kernelSize.second, stride.second
|
||||||
|
);
|
||||||
dim2d paddingSize = {paddingFirst, paddingSecond};
|
dim2d paddingSize = {paddingFirst, paddingSecond};
|
||||||
|
|
||||||
|
|
||||||
CUDANet::Layers::ActivationType activationType =
|
CUDANet::Layers::ActivationType activationType =
|
||||||
CUDANet::Layers::ActivationType::RELU;
|
CUDANet::Layers::ActivationType::RELU;
|
||||||
|
|
||||||
@@ -265,7 +273,9 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
|||||||
activationType, input, kernels.data(), d_input
|
activationType, input, kernels.data(), d_input
|
||||||
);
|
);
|
||||||
|
|
||||||
EXPECT_EQ(inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize());
|
EXPECT_EQ(
|
||||||
|
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
|
||||||
|
);
|
||||||
|
|
||||||
d_output = conv2d.forward(d_input);
|
d_output = conv2d.forward(d_input);
|
||||||
|
|
||||||
|
|||||||
@@ -5,15 +5,74 @@
|
|||||||
|
|
||||||
#include "max_pooling.cuh"
|
#include "max_pooling.cuh"
|
||||||
|
|
||||||
TEST(MaxPoolingLayerTest, MaxPoolForwardTest) {
|
class MaxPoolingLayerTest : public ::testing::Test {
|
||||||
dim2d inputSize = {4, 4};
|
protected:
|
||||||
int nChannels = 2;
|
dim2d inputSize;
|
||||||
dim2d poolingSize = {2, 2};
|
int nChannels;
|
||||||
dim2d stride = {2, 2};
|
dim2d poolingSize;
|
||||||
|
dim2d stride;
|
||||||
|
std::vector<float> input;
|
||||||
|
std::vector<float> expected;
|
||||||
|
|
||||||
|
float *d_input;
|
||||||
|
float *d_output;
|
||||||
|
CUDANet::Layers::MaxPooling2d *maxPoolingLayer;
|
||||||
|
|
||||||
|
virtual void SetUp() override {
|
||||||
|
d_input = nullptr;
|
||||||
|
d_output = nullptr;
|
||||||
|
maxPoolingLayer = nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual void TearDown() override {
|
||||||
|
if (d_input) {
|
||||||
|
cudaFree(d_input);
|
||||||
|
}
|
||||||
|
delete maxPoolingLayer;
|
||||||
|
}
|
||||||
|
|
||||||
|
void runTest() {
|
||||||
cudaError_t cudaStatus;
|
cudaError_t cudaStatus;
|
||||||
|
|
||||||
std::vector<float> input = {
|
maxPoolingLayer = new CUDANet::Layers::MaxPooling2d(
|
||||||
|
inputSize, nChannels, poolingSize, stride,
|
||||||
|
CUDANet::Layers::ActivationType::NONE
|
||||||
|
);
|
||||||
|
|
||||||
|
cudaStatus =
|
||||||
|
cudaMalloc((void **)&d_input, sizeof(float) * input.size());
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
cudaStatus = cudaMemcpy(
|
||||||
|
d_input, input.data(), sizeof(float) * input.size(),
|
||||||
|
cudaMemcpyHostToDevice
|
||||||
|
);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
d_output = maxPoolingLayer->forward(d_input);
|
||||||
|
|
||||||
|
int outputSize = maxPoolingLayer->getOutputSize();
|
||||||
|
|
||||||
|
std::vector<float> output(outputSize);
|
||||||
|
cudaStatus = cudaMemcpy(
|
||||||
|
output.data(), d_output, sizeof(float) * output.size(),
|
||||||
|
cudaMemcpyDeviceToHost
|
||||||
|
);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
for (int i = 0; i < output.size(); ++i) {
|
||||||
|
EXPECT_FLOAT_EQ(expected[i], output[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(MaxPoolingLayerTest, MaxPoolForwardTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {2, 2};
|
||||||
|
|
||||||
|
input = {
|
||||||
// clang-format off
|
// clang-format off
|
||||||
// Channel 0
|
// Channel 0
|
||||||
0.573f, 0.619f, 0.732f, 0.055f,
|
0.573f, 0.619f, 0.732f, 0.055f,
|
||||||
@@ -28,43 +87,82 @@ TEST(MaxPoolingLayerTest, MaxPoolForwardTest) {
|
|||||||
// clang-format on
|
// clang-format on
|
||||||
};
|
};
|
||||||
|
|
||||||
CUDANet::Layers::MaxPooling2d maxPoolingLayer(
|
expected = {0.619f, 0.732f, 0.712f, 0.742f, 0.919f, 0.973f, 0.819f, 0.85f};
|
||||||
inputSize, nChannels, poolingSize, stride,
|
|
||||||
CUDANet::Layers::ActivationType::NONE
|
|
||||||
);
|
|
||||||
|
|
||||||
float *d_input;
|
runTest();
|
||||||
|
|
||||||
cudaStatus = cudaMalloc(
|
|
||||||
(void **)&d_input, sizeof(float) * inputSize.first * inputSize.second * nChannels
|
|
||||||
);
|
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
||||||
|
|
||||||
cudaStatus = cudaMemcpy(
|
|
||||||
d_input, input.data(),
|
|
||||||
sizeof(float) * inputSize.first * inputSize.second * nChannels,
|
|
||||||
cudaMemcpyHostToDevice
|
|
||||||
);
|
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
||||||
|
|
||||||
float *d_output = maxPoolingLayer.forward(d_input);
|
|
||||||
|
|
||||||
int outputSize = maxPoolingLayer.getOutputSize();
|
|
||||||
|
|
||||||
std::vector<float> output(outputSize);
|
|
||||||
cudaStatus = cudaMemcpy(
|
|
||||||
output.data(), d_output, sizeof(float) * outputSize,
|
|
||||||
cudaMemcpyDeviceToHost
|
|
||||||
);
|
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
||||||
|
|
||||||
std::vector<float> expected = {0.619f, 0.732f, 0.712f, 0.742f,
|
|
||||||
0.919f, 0.973f, 0.819f, 0.85f};
|
|
||||||
|
|
||||||
for (int i = 0; i < output.size(); ++i) {
|
|
||||||
EXPECT_FLOAT_EQ(expected[i], output[i]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
cudaStatus = cudaFree(d_input);
|
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareInputTest) {
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
inputSize = {4, 6}; // Non-square input
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {2, 2};
|
||||||
|
|
||||||
|
input = {// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
|
||||||
|
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
|
||||||
|
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
|
||||||
|
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
|
||||||
|
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.619f, 0.732f, 0.789f, 0.712f, 0.742f, 0.987f, 0.919f, 0.973f, 0.987f, 0.819f, 0.85f, 0.987f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquarePoolSizeTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 3}; // Non-square pooling size
|
||||||
|
stride = {2, 2};
|
||||||
|
|
||||||
|
input = {
|
||||||
|
// clang-format off
|
||||||
|
// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f,
|
||||||
|
0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
|
0.712f, 0.055f, 0.243f, 0.316f,
|
||||||
|
0.573f, 0.619f, 0.742f, 0.055f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f,
|
||||||
|
0.073f, 0.362f, 0.973f, 0.059f,
|
||||||
|
0.473f, 0.455f, 0.283f, 0.416f,
|
||||||
|
0.532f, 0.819f, 0.732f, 0.850f
|
||||||
|
// clang-format on
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.732f, 0.742f, 0.973f, 0.819f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareStrideTest) {
|
||||||
|
inputSize = {4, 4};
|
||||||
|
nChannels = 2;
|
||||||
|
poolingSize = {2, 2};
|
||||||
|
stride = {1, 2}; // Non-square stride
|
||||||
|
|
||||||
|
input = {
|
||||||
|
// clang-format off
|
||||||
|
// Channel 0
|
||||||
|
0.573f, 0.619f, 0.732f, 0.055f,
|
||||||
|
0.243f, 0.316f, 0.573f, 0.619f,
|
||||||
|
0.712f, 0.055f, 0.243f, 0.316f,
|
||||||
|
0.573f, 0.619f, 0.742f, 0.055f,
|
||||||
|
// Channel 1
|
||||||
|
0.473f, 0.919f, 0.107f, 0.073f,
|
||||||
|
0.073f, 0.362f, 0.973f, 0.059f,
|
||||||
|
0.473f, 0.455f, 0.283f, 0.416f,
|
||||||
|
0.532f, 0.819f, 0.732f, 0.850f
|
||||||
|
// clang-format on
|
||||||
|
};
|
||||||
|
|
||||||
|
expected = {0.619f, 0.732f, 0.712f, 0.619f, 0.712f, 0.742f, 0.919f, 0.973f, 0.473f, 0.973f, 0.819f, 0.85f};
|
||||||
|
|
||||||
|
runTest();
|
||||||
|
|
||||||
}
|
}
|
||||||
@@ -2,6 +2,8 @@ import torch
|
|||||||
|
|
||||||
from utils import print_cpp_vector
|
from utils import print_cpp_vector
|
||||||
|
|
||||||
|
def gen_batch_norm_test_result(input):
|
||||||
|
|
||||||
batch_norm = torch.nn.BatchNorm2d(2, track_running_stats=False)
|
batch_norm = torch.nn.BatchNorm2d(2, track_running_stats=False)
|
||||||
|
|
||||||
weights = torch.Tensor([0.63508, 0.64903])
|
weights = torch.Tensor([0.63508, 0.64903])
|
||||||
@@ -10,6 +12,14 @@ biases= torch.Tensor([0.25079, 0.66841])
|
|||||||
batch_norm.weight = torch.nn.Parameter(weights)
|
batch_norm.weight = torch.nn.Parameter(weights)
|
||||||
batch_norm.bias = torch.nn.Parameter(biases)
|
batch_norm.bias = torch.nn.Parameter(biases)
|
||||||
|
|
||||||
|
output = batch_norm(input)
|
||||||
|
print_cpp_vector(output.flatten())
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
print("Generating test results...")
|
||||||
|
print("Batch norm test:")
|
||||||
|
|
||||||
input = torch.Tensor([
|
input = torch.Tensor([
|
||||||
# Channel 0
|
# Channel 0
|
||||||
0.38899, 0.80478, 0.48836, 0.97381,
|
0.38899, 0.80478, 0.48836, 0.97381,
|
||||||
@@ -23,9 +33,20 @@ input = torch.Tensor([
|
|||||||
0.57672, 0.48364, 0.10863, 0.0571
|
0.57672, 0.48364, 0.10863, 0.0571
|
||||||
]).reshape(1, 2, 4, 4)
|
]).reshape(1, 2, 4, 4)
|
||||||
|
|
||||||
output = batch_norm(input)
|
gen_batch_norm_test_result(input)
|
||||||
print_cpp_vector(output.flatten())
|
|
||||||
|
|
||||||
print(batch_norm.running_mean)
|
print("Batch norm test non square input:")
|
||||||
print(batch_norm.running_var)
|
|
||||||
|
input = torch.Tensor([
|
||||||
|
0.38899, 0.80478, 0.48836, 0.97381, 0.21567, 0.92312,
|
||||||
|
0.57508, 0.60835, 0.65467, 0.00168, 0.31567, 0.71345,
|
||||||
|
0.65869, 0.74235, 0.17928, 0.70349, 0.12856, 0.95645,
|
||||||
|
0.15524, 0.38664, 0.23411, 0.7137, 0.26789, 0.83412,
|
||||||
|
0.32473, 0.15698, 0.314, 0.60888, 0.23145, 0.78945,
|
||||||
|
0.80268, 0.99766, 0.93694, 0.89237, 0.61234, 0.92314,
|
||||||
|
0.13449, 0.27367, 0.53036, 0.18962, 0.45623, 0.14523,
|
||||||
|
0.57672, 0.48364, 0.10863, 0.0571, 0.78934, 0.67545
|
||||||
|
]).reshape(1, 2, 4, 6)
|
||||||
|
|
||||||
|
gen_batch_norm_test_result(input)
|
||||||
|
|
||||||
|
|||||||
@@ -14,6 +14,19 @@ def _get_pool_input():
|
|||||||
0.532, 0.819, 0.732, 0.850
|
0.532, 0.819, 0.732, 0.850
|
||||||
]).reshape(1, 2, 4, 4)
|
]).reshape(1, 2, 4, 4)
|
||||||
|
|
||||||
|
def _get_pool_input_non_square():
|
||||||
|
return torch.Tensor([
|
||||||
|
0.573, 0.619, 0.732, 0.055, 0.123, 0.234,
|
||||||
|
0.243, 0.316, 0.573, 0.619, 0.456, 0.789,
|
||||||
|
0.712, 0.055, 0.243, 0.316, 0.654, 0.987,
|
||||||
|
0.573, 0.619, 0.742, 0.055, 0.321, 0.654,
|
||||||
|
0.473, 0.919, 0.107, 0.073, 0.321, 0.654,
|
||||||
|
0.073, 0.362, 0.973, 0.059, 0.654, 0.987,
|
||||||
|
0.473, 0.455, 0.283, 0.416, 0.789, 0.123,
|
||||||
|
0.532, 0.819, 0.732, 0.850, 0.987, 0.321
|
||||||
|
]).reshape(1, 2, 4, 6)
|
||||||
|
|
||||||
|
|
||||||
def gen_max_pool_test_result():
|
def gen_max_pool_test_result():
|
||||||
input = _get_pool_input()
|
input = _get_pool_input()
|
||||||
|
|
||||||
@@ -23,6 +36,33 @@ def gen_max_pool_test_result():
|
|||||||
print_cpp_vector(output)
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_max_pool_non_square_input_test_result():
|
||||||
|
input = _get_pool_input_non_square()
|
||||||
|
|
||||||
|
output = torch.nn.MaxPool2d(kernel_size=2, stride=2)(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_max_non_square_pool_test_result():
|
||||||
|
input = _get_pool_input()
|
||||||
|
|
||||||
|
output = torch.nn.MaxPool2d(kernel_size=(2, 3), stride=2)(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_max_pool_non_square_stride_test_result():
|
||||||
|
input = _get_pool_input()
|
||||||
|
|
||||||
|
output = torch.nn.MaxPool2d(kernel_size=2, stride=(1, 2))(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
def gen_avg_pool_test_result():
|
def gen_avg_pool_test_result():
|
||||||
|
|
||||||
input = _get_pool_input()
|
input = _get_pool_input()
|
||||||
@@ -33,9 +73,55 @@ def gen_avg_pool_test_result():
|
|||||||
print_cpp_vector(output)
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_avg_pool_non_square_input_test_result():
|
||||||
|
|
||||||
|
input = _get_pool_input_non_square()
|
||||||
|
|
||||||
|
output = torch.nn.AvgPool2d(kernel_size=2, stride=2)(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_avg_non_square_pool_test_result():
|
||||||
|
|
||||||
|
input = _get_pool_input()
|
||||||
|
|
||||||
|
output = torch.nn.AvgPool2d(kernel_size=(2, 3), stride=2)(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
def gen_avg_pool_non_square_stride_test_result():
|
||||||
|
|
||||||
|
input = _get_pool_input()
|
||||||
|
|
||||||
|
output = torch.nn.AvgPool2d(kernel_size=2, stride=(1, 2))(input)
|
||||||
|
output = torch.flatten(output)
|
||||||
|
|
||||||
|
print_cpp_vector(output)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
print("Generating test results...")
|
print("Generating test results...")
|
||||||
print("Max pool test:")
|
print("Max pool test:")
|
||||||
gen_max_pool_test_result()
|
gen_max_pool_test_result()
|
||||||
|
print("Max pool non square input test:")
|
||||||
|
gen_max_pool_non_square_input_test_result()
|
||||||
|
print("Max non square pool test:")
|
||||||
|
gen_max_non_square_pool_test_result()
|
||||||
|
print("Max pool non square stride test:")
|
||||||
|
gen_max_pool_non_square_stride_test_result()
|
||||||
|
|
||||||
|
print("--------------")
|
||||||
|
|
||||||
print("Avg pool test:")
|
print("Avg pool test:")
|
||||||
gen_avg_pool_test_result()
|
gen_avg_pool_test_result()
|
||||||
|
print("Avg pool non square input test:")
|
||||||
|
gen_avg_pool_non_square_input_test_result()
|
||||||
|
print("Avg non square pool test:")
|
||||||
|
gen_avg_non_square_pool_test_result()
|
||||||
|
print("Avg pool non square stride test:")
|
||||||
|
gen_avg_pool_non_square_stride_test_result()
|
||||||
|
|||||||
Reference in New Issue
Block a user