mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
Add non square pooling and batch norm tests
This commit is contained in:
@@ -82,8 +82,9 @@ TEST_F(Conv2dTest, SimpleTest) {
|
||||
);
|
||||
|
||||
int outputHeight = (inputSize.first - kernelSize.first) / stride.first + 1;
|
||||
int outputWidth = (inputSize.second - kernelSize.second) / stride.second + 1;
|
||||
int outputSize = outputHeight * outputWidth * numFilters;
|
||||
int outputWidth =
|
||||
(inputSize.second - kernelSize.second) / stride.second + 1;
|
||||
int outputSize = outputHeight * outputWidth * numFilters;
|
||||
EXPECT_EQ(outputSize, conv2d.getOutputSize());
|
||||
|
||||
d_output = conv2d.forward(d_input);
|
||||
@@ -112,9 +113,12 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
dim2d stride = {1, 1};
|
||||
int numFilters = 2;
|
||||
|
||||
int paddingFirst = CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
|
||||
int paddingSecond = CUDANET_SAME_PADDING(inputSize.second, kernelSize.second, stride.second);
|
||||
dim2d paddingSize = {paddingFirst, paddingSecond};
|
||||
int paddingFirst =
|
||||
CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
|
||||
int paddingSecond = CUDANET_SAME_PADDING(
|
||||
inputSize.second, kernelSize.second, stride.second
|
||||
);
|
||||
dim2d paddingSize = {paddingFirst, paddingSecond};
|
||||
|
||||
CUDANet::Layers::ActivationType activationType =
|
||||
CUDANet::Layers::ActivationType::NONE;
|
||||
@@ -177,7 +181,9 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
activationType, input, kernels.data(), d_input
|
||||
);
|
||||
|
||||
EXPECT_EQ(inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize());
|
||||
EXPECT_EQ(
|
||||
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
|
||||
);
|
||||
|
||||
d_output = conv2d.forward(d_input);
|
||||
|
||||
@@ -209,16 +215,18 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
|
||||
TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
dim2d inputSize = {5, 5};
|
||||
int inputChannels = 2;
|
||||
int inputChannels = 2;
|
||||
dim2d kernelSize = {3, 3};
|
||||
dim2d stride = {2, 2};
|
||||
int numFilters = 2;
|
||||
int numFilters = 2;
|
||||
|
||||
int paddingFirst = CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
|
||||
int paddingSecond = CUDANET_SAME_PADDING(inputSize.second, kernelSize.second, stride.second);
|
||||
int paddingFirst =
|
||||
CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
|
||||
int paddingSecond = CUDANET_SAME_PADDING(
|
||||
inputSize.second, kernelSize.second, stride.second
|
||||
);
|
||||
dim2d paddingSize = {paddingFirst, paddingSecond};
|
||||
|
||||
|
||||
CUDANet::Layers::ActivationType activationType =
|
||||
CUDANet::Layers::ActivationType::RELU;
|
||||
|
||||
@@ -265,7 +273,9 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
activationType, input, kernels.data(), d_input
|
||||
);
|
||||
|
||||
EXPECT_EQ(inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize());
|
||||
EXPECT_EQ(
|
||||
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
|
||||
);
|
||||
|
||||
d_output = conv2d.forward(d_input);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user