Add non square pooling and batch norm tests

This commit is contained in:
2024-05-20 22:16:00 +02:00
parent 6dca8ccd3c
commit 10e73638b6
7 changed files with 533 additions and 173 deletions

View File

@@ -5,15 +5,78 @@
#include "avg_pooling.cuh"
TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
dim2d inputSize = {4, 4};
int nChannels = 2;
dim2d poolingSize = {2, 2};
dim2d stride = {2, 2};
class AvgPoolingLayerTest : public ::testing::Test {
protected:
dim2d inputSize;
int nChannels;
dim2d poolingSize;
dim2d stride;
std::vector<float> input;
std::vector<float> expected;
cudaError_t cudaStatus;
float *d_input;
float *d_output;
CUDANet::Layers::AvgPooling2d *avgPoolingLayer;
std::vector<float> input = {
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
avgPoolingLayer = nullptr;
}
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
}
void runTest() {
cudaError_t cudaStatus;
avgPoolingLayer = new CUDANet::Layers::AvgPooling2d(
inputSize, nChannels, poolingSize, stride,
CUDANet::Layers::ActivationType::NONE
);
cudaStatus = cudaMalloc(
(void **)&d_input,
sizeof(float) * inputSize.first * inputSize.second * nChannels
);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(),
sizeof(float) * inputSize.first * inputSize.second * nChannels,
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = avgPoolingLayer->forward(d_input);
int outputSize = avgPoolingLayer->getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_NEAR(expected[i], output[i], 1e-4);
}
delete avgPoolingLayer;
}
};
TEST_F(AvgPoolingLayerTest, AvgPoolForwardTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
@@ -28,44 +91,69 @@ TEST(AvgPoolingLayerTest, AvgPoolForwardTest) {
// clang-format on
};
CUDANet::Layers::AvgPooling2d avgPoolingLayer(
inputSize, nChannels, poolingSize, stride,
CUDANet::Layers::ActivationType::NONE
);
expected = {0.43775f, 0.49475f, 0.48975f, 0.339f,
0.45675f, 0.303f, 0.56975f, 0.57025f};
float *d_input;
cudaStatus = cudaMalloc(
(void **)&d_input,
sizeof(float) * inputSize.first * inputSize.second * nChannels
);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(),
sizeof(float) * inputSize.first * inputSize.second * nChannels,
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
float *d_output = avgPoolingLayer.forward(d_input);
int outputSize = avgPoolingLayer.getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> expected = {0.43775f, 0.49475f, 0.48975f, 0.339f,
0.45675f, 0.303f, 0.56975f, 0.57025f};
for (int i = 0; i < output.size(); ++i) {
EXPECT_NEAR(expected[i], output[i], 1e-4);
}
cudaStatus = cudaFree(d_input);
EXPECT_EQ(cudaStatus, cudaSuccess);
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareInputTest) {
inputSize = {4, 6}; // Non-square input
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
};
expected = {0.43775f, 0.49475f, 0.4005f, 0.48975f, 0.339f, 0.654f,
0.45675f, 0.303f, 0.654f, 0.56975f, 0.57025f, 0.555f};
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePoolingTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 3}; // Non-square pooling
stride = {2, 2};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
};
expected = {0.50933f, 0.49067f, 0.4845f, 0.549f};
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareStrideTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {1, 2}; // Non-square stride
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
};
expected = {0.43775f, 0.49475f, 0.3315f, 0.43775f, 0.48975f, 0.339f,
0.45675f, 0.303f, 0.34075f, 0.43275f, 0.56975f, 0.57025f};
runTest();
}

View File

@@ -6,27 +6,80 @@
#include "activation.cuh"
#include "batch_norm.cuh"
TEST(BatchNormLayerTest, BatchNormSmallForwardTest) {
dim2d inputSize = {4, 4};
int nChannels = 2;
class BatchNormLayerTest : public ::testing::Test {
protected:
dim2d inputSize;
int nChannels;
std::vector<float> weights;
std::vector<float> biases;
std::vector<float> input;
std::vector<float> expected;
cudaError_t cudaStatus;
float *d_input;
float *d_output;
CUDANet::Layers::BatchNorm2d *batchNorm;
CUDANet::Layers::BatchNorm2d batchNorm(
inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE
);
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
batchNorm = nullptr;
}
std::vector<float> weights = {0.63508f, 0.64903f};
std::vector<float> biases = {0.25079f, 0.66841f};
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
}
batchNorm.setWeights(weights.data());
batchNorm.setBiases(biases.data());
void runTest() {
cudaError_t cudaStatus;
cudaStatus = cudaGetLastError();
EXPECT_EQ(cudaStatus, cudaSuccess);
batchNorm = new CUDANet::Layers::BatchNorm2d(
inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE
);
batchNorm->setWeights(weights.data());
batchNorm->setBiases(biases.data());
cudaStatus = cudaGetLastError();
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus =
cudaMalloc((void **)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = batchNorm->forward(d_input);
std::vector<float> output(input.size());
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * output.size(),
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_NEAR(output[i], expected[i], 1e-5);
}
delete batchNorm;
}
};
TEST_F(BatchNormLayerTest, BatchNormSmallForwardTest) {
inputSize = {4, 4};
nChannels = 2;
weights = {0.63508f, 0.64903f};
biases = {0.25079f, 0.66841f};
// clang-format off
std::vector<float> input = {
input = {
// Channel 0
0.38899f, 0.80478f, 0.48836f, 0.97381f,
0.57508f, 0.60835f, 0.65467f, 0.00168f,
@@ -40,40 +93,44 @@ TEST(BatchNormLayerTest, BatchNormSmallForwardTest) {
};
// clang-format on
std::vector<float> output(input.size());
expected = {-0.06007f, 0.951f, 0.18157f, 1.36202f, 0.39244f, 0.47335f,
0.58598f, -1.00188f, 0.59576f, 0.79919f, -0.57001f, 0.70469f,
-0.62847f, -0.06578f, -0.43668f, 0.72952f, 0.37726f, 0.02088f,
0.35446f, 0.98092f, 1.39264f, 1.80686f, 1.67786f, 1.58318f,
-0.0269f, 0.26878f, 0.81411f, 0.09022f, 0.9126f, 0.71485f,
-0.08184f, -0.19131f};
float* d_input;
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
runTest();
}
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
TEST_F(BatchNormLayerTest, BatchNormNonSquareInputTest) {
inputSize = {4, 6}; // Non-square input
nChannels = 2;
weights = {0.63508f, 0.64903f};
biases = {0.25079f, 0.66841f};
float* d_output = batchNorm.forward(d_input);
input = {// Channel 0
0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.21567f, 0.92312f,
0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.31567f, 0.71345f,
0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.12856f, 0.95645f,
0.15524f, 0.38664f, 0.23411f, 0.7137f, 0.26789f, 0.83412f,
// Channel 1
0.32473f, 0.15698f, 0.314f, 0.60888f, 0.23145f, 0.78945f, 0.80268f,
0.99766f, 0.93694f, 0.89237f, 0.61234f, 0.92314f, 0.13449f,
0.27367f, 0.53036f, 0.18962f, 0.45623f, 0.14523f, 0.57672f,
0.48364f, 0.10863f, 0.0571f, 0.78934f, 0.67545f
};
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * output.size(),
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
expected = {-0.05598f, 0.87495f, 0.1665f, 1.2534f, -0.44404f,
1.13991f, 0.36066f, 0.43515f, 0.53886f, -0.92315f,
-0.22014f, 0.67047f, 0.54786f, 0.73517f, -0.52552f,
0.64817f, -0.63907f, 1.21453f, -0.57934f, -0.06124f,
-0.40275f, 0.67103f, -0.32712f, 0.94064f, 0.28344f,
-0.08405f, 0.25993f, 0.90592f, 0.07909f, 1.30149f,
1.33047f, 1.7576f, 1.62459f, 1.52695f, 0.9135f,
1.59436f, -0.13331f, 0.17158f, 0.73391f, -0.01254f,
0.57151f, -0.10979f, 0.83546f, 0.63156f, -0.18996f,
-0.30285f, 1.30124f, 1.05175f};
std::vector<float> expected = {-0.06007f, 0.951f, 0.18157f, 1.36202f,
0.39244f, 0.47335f, 0.58598f, -1.00188f,
0.59576f, 0.79919f, -0.57001f, 0.70469f,
-0.62847f, -0.06578f, -0.43668f, 0.72952f,
0.37726f, 0.02088f, 0.35446f, 0.98092f,
1.39264f, 1.80686f, 1.67786f, 1.58318f,
-0.0269f, 0.26878f, 0.81411f, 0.09022f,
0.9126f, 0.71485f, -0.08184f, -0.19131f};
// std::cout << "BatchNorm2d: " << std::endl;
for (int i = 0; i < output.size(); i++) {
EXPECT_NEAR(output[i], expected[i], 1e-5);
// std::cout << output[i] << " ";
}
// std::cout << std::endl;
cudaFree(d_input);
runTest();
}

View File

@@ -82,8 +82,9 @@ TEST_F(Conv2dTest, SimpleTest) {
);
int outputHeight = (inputSize.first - kernelSize.first) / stride.first + 1;
int outputWidth = (inputSize.second - kernelSize.second) / stride.second + 1;
int outputSize = outputHeight * outputWidth * numFilters;
int outputWidth =
(inputSize.second - kernelSize.second) / stride.second + 1;
int outputSize = outputHeight * outputWidth * numFilters;
EXPECT_EQ(outputSize, conv2d.getOutputSize());
d_output = conv2d.forward(d_input);
@@ -112,9 +113,12 @@ TEST_F(Conv2dTest, PaddedTest) {
dim2d stride = {1, 1};
int numFilters = 2;
int paddingFirst = CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
int paddingSecond = CUDANET_SAME_PADDING(inputSize.second, kernelSize.second, stride.second);
dim2d paddingSize = {paddingFirst, paddingSecond};
int paddingFirst =
CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
int paddingSecond = CUDANET_SAME_PADDING(
inputSize.second, kernelSize.second, stride.second
);
dim2d paddingSize = {paddingFirst, paddingSecond};
CUDANet::Layers::ActivationType activationType =
CUDANet::Layers::ActivationType::NONE;
@@ -177,7 +181,9 @@ TEST_F(Conv2dTest, PaddedTest) {
activationType, input, kernels.data(), d_input
);
EXPECT_EQ(inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize());
EXPECT_EQ(
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
);
d_output = conv2d.forward(d_input);
@@ -209,16 +215,18 @@ TEST_F(Conv2dTest, PaddedTest) {
TEST_F(Conv2dTest, StridedPaddedConvolution) {
dim2d inputSize = {5, 5};
int inputChannels = 2;
int inputChannels = 2;
dim2d kernelSize = {3, 3};
dim2d stride = {2, 2};
int numFilters = 2;
int numFilters = 2;
int paddingFirst = CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
int paddingSecond = CUDANET_SAME_PADDING(inputSize.second, kernelSize.second, stride.second);
int paddingFirst =
CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
int paddingSecond = CUDANET_SAME_PADDING(
inputSize.second, kernelSize.second, stride.second
);
dim2d paddingSize = {paddingFirst, paddingSecond};
CUDANet::Layers::ActivationType activationType =
CUDANet::Layers::ActivationType::RELU;
@@ -265,7 +273,9 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
activationType, input, kernels.data(), d_input
);
EXPECT_EQ(inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize());
EXPECT_EQ(
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
);
d_output = conv2d.forward(d_input);

View File

@@ -5,15 +5,74 @@
#include "max_pooling.cuh"
TEST(MaxPoolingLayerTest, MaxPoolForwardTest) {
dim2d inputSize = {4, 4};
int nChannels = 2;
dim2d poolingSize = {2, 2};
dim2d stride = {2, 2};
class MaxPoolingLayerTest : public ::testing::Test {
protected:
dim2d inputSize;
int nChannels;
dim2d poolingSize;
dim2d stride;
std::vector<float> input;
std::vector<float> expected;
cudaError_t cudaStatus;
float *d_input;
float *d_output;
CUDANet::Layers::MaxPooling2d *maxPoolingLayer;
std::vector<float> input = {
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
maxPoolingLayer = nullptr;
}
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
delete maxPoolingLayer;
}
void runTest() {
cudaError_t cudaStatus;
maxPoolingLayer = new CUDANet::Layers::MaxPooling2d(
inputSize, nChannels, poolingSize, stride,
CUDANet::Layers::ActivationType::NONE
);
cudaStatus =
cudaMalloc((void **)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = maxPoolingLayer->forward(d_input);
int outputSize = maxPoolingLayer->getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * output.size(),
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_FLOAT_EQ(expected[i], output[i]);
}
}
};
TEST_F(MaxPoolingLayerTest, MaxPoolForwardTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
@@ -28,43 +87,82 @@ TEST(MaxPoolingLayerTest, MaxPoolForwardTest) {
// clang-format on
};
CUDANet::Layers::MaxPooling2d maxPoolingLayer(
inputSize, nChannels, poolingSize, stride,
CUDANet::Layers::ActivationType::NONE
);
expected = {0.619f, 0.732f, 0.712f, 0.742f, 0.919f, 0.973f, 0.819f, 0.85f};
float *d_input;
cudaStatus = cudaMalloc(
(void **)&d_input, sizeof(float) * inputSize.first * inputSize.second * nChannels
);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(),
sizeof(float) * inputSize.first * inputSize.second * nChannels,
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
float *d_output = maxPoolingLayer.forward(d_input);
int outputSize = maxPoolingLayer.getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> expected = {0.619f, 0.732f, 0.712f, 0.742f,
0.919f, 0.973f, 0.819f, 0.85f};
for (int i = 0; i < output.size(); ++i) {
EXPECT_FLOAT_EQ(expected[i], output[i]);
}
cudaStatus = cudaFree(d_input);
EXPECT_EQ(cudaStatus, cudaSuccess);
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareInputTest) {
inputSize = {4, 6}; // Non-square input
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
};
expected = {0.619f, 0.732f, 0.789f, 0.712f, 0.742f, 0.987f, 0.919f, 0.973f, 0.987f, 0.819f, 0.85f, 0.987f};
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquarePoolSizeTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 3}; // Non-square pooling size
stride = {2, 2};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.732f, 0.742f, 0.973f, 0.819f};
runTest();
}
TEST_F(MaxPoolingLayerTest, MaxPoolForwardNonSquareStrideTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {1, 2}; // Non-square stride
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.619f, 0.732f, 0.712f, 0.619f, 0.712f, 0.742f, 0.919f, 0.973f, 0.473f, 0.973f, 0.819f, 0.85f};
runTest();
}