mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
Add toplevel CUDANet namespace
This commit is contained in:
@@ -7,20 +7,20 @@
|
||||
|
||||
class Conv2dTest : public ::testing::Test {
|
||||
protected:
|
||||
Layers::Conv2d commonTestSetup(
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
Layers::Padding padding,
|
||||
int numFilters,
|
||||
Layers::Activation activation,
|
||||
std::vector<float>& input,
|
||||
float* kernels,
|
||||
float*& d_input
|
||||
CUDANet::Layers::Conv2d commonTestSetup(
|
||||
int inputSize,
|
||||
int inputChannels,
|
||||
int kernelSize,
|
||||
int stride,
|
||||
CUDANet::Layers::Padding padding,
|
||||
int numFilters,
|
||||
CUDANet::Layers::Activation activation,
|
||||
std::vector<float>& input,
|
||||
float* kernels,
|
||||
float*& d_input
|
||||
) {
|
||||
// Create Conv2d layer
|
||||
Layers::Conv2d conv2d(
|
||||
CUDANet::Layers::Conv2d conv2d(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation
|
||||
);
|
||||
@@ -53,13 +53,13 @@ class Conv2dTest : public ::testing::Test {
|
||||
};
|
||||
|
||||
TEST_F(Conv2dTest, SimpleTest) {
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
int stride = 1;
|
||||
Layers::Padding padding = Layers::Padding::VALID;
|
||||
int numFilters = 1;
|
||||
Layers::Activation activation = Layers::Activation::NONE;
|
||||
int inputSize = 4;
|
||||
int inputChannels = 1;
|
||||
int kernelSize = 2;
|
||||
int stride = 1;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::VALID;
|
||||
int numFilters = 1;
|
||||
CUDANet::Layers::Activation activation = CUDANet::Layers::Activation::NONE;
|
||||
|
||||
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
|
||||
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
|
||||
@@ -74,7 +74,7 @@ TEST_F(Conv2dTest, SimpleTest) {
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
Layers::Conv2d conv2d = commonTestSetup(
|
||||
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels.data(), d_input
|
||||
);
|
||||
@@ -102,13 +102,13 @@ TEST_F(Conv2dTest, SimpleTest) {
|
||||
}
|
||||
|
||||
TEST_F(Conv2dTest, PaddedTest) {
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
Layers::Padding padding = Layers::Padding::SAME;
|
||||
int numFilters = 2;
|
||||
Layers::Activation activation = Layers::Activation::NONE;
|
||||
int inputSize = 5;
|
||||
int inputChannels = 3;
|
||||
int kernelSize = 3;
|
||||
int stride = 1;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::SAME;
|
||||
int numFilters = 2;
|
||||
CUDANet::Layers::Activation activation = CUDANet::Layers::Activation::NONE;
|
||||
|
||||
// clang-format off
|
||||
std::vector<float> input = {
|
||||
@@ -163,7 +163,7 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
Layers::Conv2d conv2d = commonTestSetup(
|
||||
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels.data(), d_input
|
||||
);
|
||||
@@ -177,7 +177,8 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
);
|
||||
cudaMemcpy(
|
||||
output.data(), d_output,
|
||||
sizeof(float) * conv2d.getOutputSize() * conv2d.getOutputSize() * numFilters,
|
||||
sizeof(float) * conv2d.getOutputSize() * conv2d.getOutputSize() *
|
||||
numFilters,
|
||||
cudaMemcpyDeviceToHost
|
||||
);
|
||||
|
||||
@@ -202,13 +203,13 @@ TEST_F(Conv2dTest, PaddedTest) {
|
||||
}
|
||||
|
||||
TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
int inputSize = 5;
|
||||
int inputChannels = 2;
|
||||
int kernelSize = 3;
|
||||
int stride = 2;
|
||||
int numFilters = 2;
|
||||
Layers::Padding padding = Layers::Padding::SAME;
|
||||
Layers::Activation activation = Layers::Activation::RELU;
|
||||
int inputSize = 5;
|
||||
int inputChannels = 2;
|
||||
int kernelSize = 3;
|
||||
int stride = 2;
|
||||
int numFilters = 2;
|
||||
CUDANet::Layers::Padding padding = CUDANet::Layers::Padding::SAME;
|
||||
CUDANet::Layers::Activation activation = CUDANet::Layers::Activation::RELU;
|
||||
|
||||
// clang-format off
|
||||
std::vector<float> input = {
|
||||
@@ -248,7 +249,7 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
Layers::Conv2d conv2d = commonTestSetup(
|
||||
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
|
||||
inputSize, inputChannels, kernelSize, stride, padding, numFilters,
|
||||
activation, input, kernels.data(), d_input
|
||||
);
|
||||
@@ -262,7 +263,8 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
|
||||
);
|
||||
cudaMemcpy(
|
||||
output.data(), d_output,
|
||||
sizeof(float) * conv2d.getOutputSize() * conv2d.getOutputSize() * numFilters,
|
||||
sizeof(float) * conv2d.getOutputSize() * conv2d.getOutputSize() *
|
||||
numFilters,
|
||||
cudaMemcpyDeviceToHost
|
||||
);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user