mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Reformat python files
This commit is contained in:
@@ -1,35 +1,10 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
|
||||
sys.path.append('../../tools') # Ugly hack
|
||||
from utils import export_model_weights, print_model_parameters
|
||||
|
||||
|
||||
def predict(model, image_path):
|
||||
input_image = Image.open(image_path)
|
||||
preprocess = transforms.Compose([
|
||||
transforms.Resize(256),
|
||||
transforms.CenterCrop(227),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
])
|
||||
input_tensor = preprocess(input_image)
|
||||
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
|
||||
|
||||
# move the input and model to GPU for speed if available
|
||||
if torch.cuda.is_available():
|
||||
input_batch = input_batch.to('cuda')
|
||||
model.to('cuda')
|
||||
|
||||
with torch.no_grad():
|
||||
output = model(input_batch)
|
||||
print(torch.argmax(output))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
alexnet = torchvision.models.alexnet(weights=torchvision.models.AlexNet_Weights.DEFAULT)
|
||||
print_model_parameters(alexnet) # print layer names and number of parameters
|
||||
|
||||
Reference in New Issue
Block a user