mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Switch padding kernel to row major
This commit is contained in:
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
/*
|
/*
|
||||||
Pads matrix width x height x n_channels to width + 2 * padding x height + 2 *
|
Pads matrix width x height x n_channels to width + 2 * padding x height + 2 *
|
||||||
padding x n_channels Matrix is represented as a pointer to column major vector
|
padding x n_channels Matrix is represented as a pointer to a vector
|
||||||
|
|
||||||
For example:
|
For example:
|
||||||
|
|
||||||
@@ -22,20 +22,29 @@ Channel 1:
|
|||||||
|
|
||||||
Is represented as:
|
Is represented as:
|
||||||
|
|
||||||
0 2 4 1 3 5 6 8 10 7 9 11
|
0 1 2 3 4 5 6 7 8 9 10 11
|
||||||
|
|
||||||
Padded result (as a continuous vector):
|
Padded result (as a continuous vector):
|
||||||
|
|
||||||
0 0 0 0 0 0 0 2 4 0
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
0 1 3 5 0 0 0 0 0 0
|
0.0f, 0.0f, 1.0f, 0.0f,
|
||||||
0 0 0 0 0 0 6 8 10 0
|
0.0f, 2.0f, 3.0f, 0.0f,
|
||||||
0 7 9 11 0 0 0 0 0 0
|
0.0f, 4.0f, 5.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 6.0f, 7.0f, 0.0f,
|
||||||
|
0.0f, 8.0f, 9.0f, 0.0f,
|
||||||
|
9.0f, 10.0f, 11.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
d_input: Pointer to input vector representing matrix
|
d_input: Pointer to input vector representing matrix
|
||||||
d_padded: Pointer to output vector representing padded matrix (needs to be
|
d_padded: Pointer to output vector representing padded matrix (needs to be
|
||||||
pre-allocated) w: Width of input matrix h: Height of input matrix n: Number of
|
pre-allocated)
|
||||||
channels in input matrix p: Padding
|
w: Width of input matrix
|
||||||
|
h: Height of input matrix
|
||||||
|
n: Number of channels in input matrix
|
||||||
|
p: Padding
|
||||||
*/
|
*/
|
||||||
__global__ void pad_matrix_kernel(
|
__global__ void pad_matrix_kernel(
|
||||||
const float* d_input,
|
const float* d_input,
|
||||||
@@ -53,21 +62,17 @@ __global__ void pad_matrix_kernel(
|
|||||||
|
|
||||||
int idx = tid;
|
int idx = tid;
|
||||||
|
|
||||||
// unravel index
|
// unravel index into padded matrix
|
||||||
int i_h = idx % (h + 2 * p);
|
int i_n = idx / ((w + 2 * p) * (h + 2 * p));
|
||||||
idx /= (h + 2 * p);
|
int i_h = idx % ((w + 2 * p) * (h + 2 * p)) / (w + 2 * p);
|
||||||
|
|
||||||
int i_w = idx % (w + 2 * p);
|
int i_w = idx % (w + 2 * p);
|
||||||
idx /= (w + 2 * p);
|
|
||||||
|
|
||||||
int i_n = idx % n;
|
|
||||||
|
|
||||||
// if i is in the padding region
|
// if i is in the padding region
|
||||||
if (i_w < p || i_w >= (w + p) || i_h < p || i_h >= (h + p)) {
|
if (i_w < p || i_w >= (w + p) || i_h < p || i_h >= (h + p)) {
|
||||||
d_padded[tid] = 0.0f;
|
d_padded[tid] = 0.0f;
|
||||||
} else {
|
} else {
|
||||||
// Get index into input vector
|
// Get index into input vector
|
||||||
int i_orig = i_n * w * h + (i_w - p) * h + (i_h - p);
|
int i_orig = i_n * w * h + (i_h - p) * w + (i_w - p);
|
||||||
d_padded[tid] = d_input[i_orig];
|
d_padded[tid] = d_input[i_orig];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -35,13 +35,13 @@ TEST(PaddingTest, SimplePaddingTest) {
|
|||||||
8 9
|
8 9
|
||||||
10 11
|
10 11
|
||||||
|
|
||||||
Represented as column major vector:
|
Represented as a vector:
|
||||||
|
|
||||||
0 2 4 1 3 5 6 8 10 7 9 11
|
0 1 2 3 4 5 6 7 8 9 10 11
|
||||||
*/
|
*/
|
||||||
|
|
||||||
std::vector<float> input = {0.0f, 2.0f, 4.0f, 1.0f, 3.0f, 5.0f,
|
std::vector<float> input = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f,
|
||||||
6.0f, 8.0f, 10.0f, 7.0f, 9.0f, 11.0f};
|
6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f};
|
||||||
|
|
||||||
cudaStatus = cudaMemcpy(
|
cudaStatus = cudaMemcpy(
|
||||||
d_input, input.data(), sizeof(float) * inputSize, cudaMemcpyHostToDevice
|
d_input, input.data(), sizeof(float) * inputSize, cudaMemcpyHostToDevice
|
||||||
@@ -57,12 +57,22 @@ TEST(PaddingTest, SimplePaddingTest) {
|
|||||||
cudaStatus = cudaDeviceSynchronize();
|
cudaStatus = cudaDeviceSynchronize();
|
||||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
// clang-format off
|
||||||
std::vector<float> expectedOutput = {
|
std::vector<float> expectedOutput = {
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f, 4.0f, 0.0f,
|
// channel 0
|
||||||
0.0f, 1.0f, 3.0f, 5.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 6.0f, 8.0f, 10.0f, 0.0f,
|
0.0f, 0.0f, 1.0f, 0.0f,
|
||||||
0.0f, 7.0f, 9.0f, 11.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
|
0.0f, 2.0f, 3.0f, 0.0f,
|
||||||
|
0.0f, 4.0f, 5.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
// channel 1
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f,
|
||||||
|
0.0f, 6.0f, 7.0f, 0.0f,
|
||||||
|
0.0f, 8.0f, 9.0f, 0.0f,
|
||||||
|
0.0f, 10.0f, 11.0f, 0.0f,
|
||||||
|
0.0f, 0.0f, 0.0f, 0.0f
|
||||||
};
|
};
|
||||||
|
// clang-format on
|
||||||
|
|
||||||
std::vector<float> output(paddedSize);
|
std::vector<float> output(paddedSize);
|
||||||
|
|
||||||
@@ -75,4 +85,8 @@ TEST(PaddingTest, SimplePaddingTest) {
|
|||||||
for (int i = 0; i < paddedSize; i++) {
|
for (int i = 0; i < paddedSize; i++) {
|
||||||
EXPECT_NEAR(expectedOutput[i], output[i], 1e-5);
|
EXPECT_NEAR(expectedOutput[i], output[i], 1e-5);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
cudaFree(d_input);
|
||||||
|
cudaFree(d_padded);
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user