Rename files to .cu and fix IDX2C usage

This commit is contained in:
2024-02-21 20:03:04 +01:00
parent 15c0cd30f0
commit 035f3b053b
9 changed files with 72 additions and 36 deletions

View File

@@ -9,8 +9,8 @@ include_directories(${CUDAToolkit_INCLUDE_DIRS})
# Add project source files for the library # Add project source files for the library
set(LIBRARY_SOURCES set(LIBRARY_SOURCES
src/utils/cuda_helper.cpp src/utils/cuda_helper.cu
src/layers/dense.cpp src/layers/dense.cu
) )
set(CMAKE_CUDA_ARCHITECTURES 75) set(CMAKE_CUDA_ARCHITECTURES 75)

View File

@@ -1,5 +1,3 @@
// fully_connected_layer.h
#ifndef DENSE_LAYER_H #ifndef DENSE_LAYER_H
#define DENSE_LAYER_H #define DENSE_LAYER_H

View File

@@ -24,7 +24,7 @@ do { \
cublasStatus_t result = call; \ cublasStatus_t result = call; \
if (result != CUBLAS_STATUS_SUCCESS) { \ if (result != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "cuBLAS error at %s:%d code=%d\n", \ fprintf(stderr, "cuBLAS error at %s:%d code=%d\n", \
__FILE__, __LINE__, static_cast<int>(result)); \ __FILE__, __LINE__, static_cast<unsigned int>(result)); \
exit(EXIT_FAILURE); \ exit(EXIT_FAILURE); \
} \ } \
} while (0) } while (0)

View File

@@ -1,6 +1,6 @@
set(LAYER_SOURCES layers/dense.cpp) set(LAYER_SOURCES layers/dense.cu)
add_library(CUDANet add_library(CUDANet
utils/cuda_helper.cpp utils/cuda_helper.cu
${LAYER_SOURCES} ${LAYER_SOURCES}
) )

View File

@@ -4,7 +4,7 @@
#include <cuda_runtime.h> #include <cuda_runtime.h>
#include <cublas_v2.h> #include <cublas_v2.h>
#include <cstdio> #include <cstdio>
#include <random> #include <iostream>
Layers::Dense::Dense(int inputSize, int outputSize, cublasHandle_t cublasHandle) Layers::Dense::Dense(int inputSize, int outputSize, cublasHandle_t cublasHandle)
: inputSize(inputSize), outputSize(outputSize), cublasHandle(cublasHandle) { : inputSize(inputSize), outputSize(outputSize), cublasHandle(cublasHandle) {
@@ -16,9 +16,12 @@ Layers::Dense::Dense(int inputSize, int outputSize, cublasHandle_t cublasHandle)
initializeWeights(); initializeWeights();
initializeBiases(); initializeBiases();
d_weights = nullptr;
d_biases = nullptr;
// Allocate GPU memory for weights and biases // Allocate GPU memory for weights and biases
CUDA_CHECK(cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize)); CUDA_CHECK(cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize));
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * biases.size())); CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * outputSize));
toCuda(); toCuda();
} }
@@ -30,43 +33,43 @@ Layers::Dense::~Dense() {
} }
void Layers::Dense::initializeWeights() { void Layers::Dense::initializeWeights() {
int numWeights = inputSize * outputSize;
std::random_device rd; for (int j = 0; j < inputSize; ++j) {
std::mt19937 gen(rd()); for (int i = 0; i < outputSize; ++i) {
std::normal_distribution<float> dist(0.0f, 0.01f); // Xavier initialization int idx = IDX2C(i, j, outputSize);
weights[idx] = 0.0f;
for (int i = 0; i < outputSize; ++i) {
for (int j = 0; j < inputSize; ++j) {
int idx = IDX2C(i, j, inputSize);
weights[idx] = dist(gen);
} }
} }
} }
void Layers::Dense::initializeBiases() { void Layers::Dense::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.1f); std::fill(biases.begin(), biases.end(), 0.0f);
} }
void Layers::Dense::forward(const float* d_input, float* d_output) { void Layers::Dense::forward(const float* d_input, float* d_output) {
const float alpha = 1.0f; const float alpha = 1.0f;
const float beta = 1.0f; const float beta = 1.0f;
cublasSgemv(cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights, inputSize, d_input, 1, &beta, d_output, 1); CUBLAS_CHECK(cublasSgemv(cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights, inputSize, d_input, 1, &beta, d_output, 1));
cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1); CUBLAS_CHECK(cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1));
} }
void Layers::Dense::toCuda() { void Layers::Dense::toCuda() {
CUBLAS_CHECK(cublasSetMatrix(outputSize, inputSize, sizeof(float), weights.data(), inputSize, d_weights, outputSize)); CUBLAS_CHECK(cublasSetMatrix(outputSize, inputSize, sizeof(float), weights.data(), outputSize, d_weights, outputSize));
CUBLAS_CHECK(cublasSetVector(biases.size(), sizeof(float), biases.data(), 1, d_biases, 1)); CUBLAS_CHECK(cublasSetVector(biases.size(), sizeof(float), biases.data(), 1, d_biases, 1));
} }
void Layers::Dense::setWeights(const std::vector<std::vector<float>>& weights_input) { void Layers::Dense::setWeights(const std::vector<std::vector<float>>& weights_input) {
int numWeights = inputSize * outputSize; int numWeights = inputSize * outputSize;
for (int i = 0; i < outputSize; ++i) { if (weights.size() != numWeights) {
for (int j = 0; j < inputSize; ++j) { std::cerr << "Invalid number of weights" << std::endl;
int idx = IDX2C(i, j, inputSize); exit(EXIT_FAILURE);
}
for (int j = 0; j < inputSize; ++j) {
for (int i = 0; i < outputSize; ++i) {
int idx = IDX2C(i, j, outputSize);
weights[idx] = weights_input[i][j]; weights[idx] = weights_input[i][j];
} }
} }

View File

@@ -1,10 +1,10 @@
find_package(GTest REQUIRED) find_package(GTest REQUIRED)
include_directories(${GTEST_INCLUDE_DIRS}) include_directories(${GTEST_INCLUDE_DIRS})
add_executable(test_dense layers/test_dense.cpp) add_executable(test_dense layers/test_dense.cu)
add_library(test_utils add_library(test_utils
test_utils/test_cublas_fixture.cpp test_utils/test_cublas_fixture.cu
) )
target_include_directories(test_utils PUBLIC test_utils) target_include_directories(test_utils PUBLIC test_utils)

View File

@@ -1,6 +1,7 @@
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include <cuda_runtime_api.h> #include <cuda_runtime_api.h>
#include <driver_types.h> #include <driver_types.h>
#include <iostream>
#include "dense.h" #include "dense.h"
#include "test_cublas_fixture.h" #include "test_cublas_fixture.h"
@@ -38,6 +39,40 @@ protected:
cublasStatus_t cublasStatus; cublasStatus_t cublasStatus;
}; };
TEST_F(DenseLayerTest, Init) {
for (int i = 1; i < 100; ++i) {
for (int j = 1; j < 100; ++j) {
int inputSize = i;
int outputSize = j;
// std::cout << "Dense layer: input size = " << inputSize << ", output size = " << outputSize << std::endl;
Layers::Dense denseLayer(inputSize, outputSize, cublasHandle);
}
}
}
TEST_F(DenseLayerTest, setWeights) {
int inputSize = 4;
int outputSize = 5;
std::vector<std::vector<float>> weights = {
{0.5f, 1.0f, 0.2f, 0.8f},
{1.2f, 0.3f, 1.5f, 0.4f},
{0.7f, 1.8f, 0.9f, 0.1f},
{0.4f, 2.0f, 0.6f, 1.1f},
{1.3f, 0.5f, 0.0f, 1.7f}
};
Layers::Dense denseLayer(inputSize, outputSize, cublasHandle);
denseLayer.setWeights(weights);
}
TEST_F(DenseLayerTest, ForwardUnitWeightMatrix) { TEST_F(DenseLayerTest, ForwardUnitWeightMatrix) {
int inputSize = 3; int inputSize = 3;
@@ -80,28 +115,28 @@ TEST_F(DenseLayerTest, ForwardRandomWeightMatrix) {
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f}; std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f};
std::vector<std::vector<float>> weights = { std::vector<std::vector<float>> weights = {
{0.5f, 1.0f, 0.2f, 0.8f}, {0.5f, 1.2f, 0.7f, 0.4f, 1.3f},
{1.2f, 0.3f, 1.5f, 0.4f}, {1.0f, 0.3f, 1.8f, 2.0f, 0.5f},
{0.7f, 1.8f, 0.9f, 0.1f}, {0.2f, 1.5f, 0.9f, 0.6f, 0.0f},
{0.4f, 2.0f, 0.6f, 1.1f}, {0.8f, 0.4f, 0.1f, 1.1f, 1.7f}
{1.3f, 0.5f, 0.0f, 1.7f} };
};
std::vector<float> biases = {0.2f, 0.5f, 0.7f, 1.1f}; std::vector<float> biases = {0.2f, 0.5f, 0.7f, 1.1f};
float* d_input; float* d_input;
float* d_output; float* d_output;
Layers::Dense denseLayer = commonTestSetup(inputSize, outputSize, input, weights, biases, d_input, d_output); Layers::Dense denseLayer = commonTestSetup(inputSize, outputSize, input, weights, biases, d_input, d_output);
denseLayer.forward(d_input, d_output); denseLayer.forward(d_input, d_output);
std::vector<float> output(outputSize); std::vector<float> output(outputSize);
cublasStatus = cublasGetVector(outputSize, sizeof(float), d_output, 1, output.data(), 1); cublasStatus = cublasGetVector(outputSize, sizeof(float), d_output, 1, output.data(), 1);
EXPECT_EQ(cublasStatus, CUBLAS_STATUS_SUCCESS); EXPECT_EQ(cublasStatus, CUBLAS_STATUS_SUCCESS);
std::vector<float> expectedOutput = {3.4f, 4.4f, 5.6f, 7.4f}; std::vector<float> expectedOutput = {10.4f, 13.0f, 8.9f, 9.3f};
for (int i = 0; i < outputSize; ++i) { for (int i = 0; i < outputSize; ++i) {
EXPECT_NEAR(output[i], expectedOutput[i], 1e-4); // Allow small tolerance for floating-point comparison EXPECT_NEAR(output[i], expectedOutput[i], 1e-4); // Allow small tolerance for floating-point comparison
} }
commonTestTeardown(d_input, d_output); commonTestTeardown(d_input, d_output);
} }