mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Rename files to .cu and fix IDX2C usage
This commit is contained in:
@@ -1,80 +0,0 @@
|
||||
#include "dense.h"
|
||||
#include "cuda_helper.h"
|
||||
#include <cstdlib>
|
||||
#include <cuda_runtime.h>
|
||||
#include <cublas_v2.h>
|
||||
#include <cstdio>
|
||||
#include <random>
|
||||
|
||||
Layers::Dense::Dense(int inputSize, int outputSize, cublasHandle_t cublasHandle)
|
||||
: inputSize(inputSize), outputSize(outputSize), cublasHandle(cublasHandle) {
|
||||
|
||||
// Allocate memory for weights and biases
|
||||
weights.resize(outputSize * inputSize);
|
||||
biases.resize(outputSize);
|
||||
|
||||
initializeWeights();
|
||||
initializeBiases();
|
||||
|
||||
// Allocate GPU memory for weights and biases
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize));
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * biases.size()));
|
||||
|
||||
toCuda();
|
||||
}
|
||||
|
||||
Layers::Dense::~Dense() {
|
||||
// Free GPU memory
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
}
|
||||
|
||||
void Layers::Dense::initializeWeights() {
|
||||
int numWeights = inputSize * outputSize;
|
||||
|
||||
std::random_device rd;
|
||||
std::mt19937 gen(rd());
|
||||
std::normal_distribution<float> dist(0.0f, 0.01f); // Xavier initialization
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
for (int j = 0; j < inputSize; ++j) {
|
||||
int idx = IDX2C(i, j, inputSize);
|
||||
weights[idx] = dist(gen);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Layers::Dense::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.1f);
|
||||
}
|
||||
|
||||
void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 1.0f;
|
||||
|
||||
cublasSgemv(cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights, inputSize, d_input, 1, &beta, d_output, 1);
|
||||
cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1);
|
||||
}
|
||||
|
||||
void Layers::Dense::toCuda() {
|
||||
CUBLAS_CHECK(cublasSetMatrix(outputSize, inputSize, sizeof(float), weights.data(), inputSize, d_weights, outputSize));
|
||||
CUBLAS_CHECK(cublasSetVector(biases.size(), sizeof(float), biases.data(), 1, d_biases, 1));
|
||||
}
|
||||
|
||||
void Layers::Dense::setWeights(const std::vector<std::vector<float>>& weights_input) {
|
||||
int numWeights = inputSize * outputSize;
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
for (int j = 0; j < inputSize; ++j) {
|
||||
int idx = IDX2C(i, j, inputSize);
|
||||
weights[idx] = weights_input[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
toCuda();
|
||||
}
|
||||
|
||||
void Layers::Dense::setBiases(const std::vector<float>& biases_input) {
|
||||
std::copy(biases_input.begin(), biases_input.end(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
Reference in New Issue
Block a user