Rename files to .cu and fix IDX2C usage

This commit is contained in:
2024-02-21 20:03:04 +01:00
parent 15c0cd30f0
commit 035f3b053b
9 changed files with 72 additions and 36 deletions

View File

@@ -1,6 +1,6 @@
set(LAYER_SOURCES layers/dense.cpp)
set(LAYER_SOURCES layers/dense.cu)
add_library(CUDANet
utils/cuda_helper.cpp
utils/cuda_helper.cu
${LAYER_SOURCES}
)

View File

@@ -4,7 +4,7 @@
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cstdio>
#include <random>
#include <iostream>
Layers::Dense::Dense(int inputSize, int outputSize, cublasHandle_t cublasHandle)
: inputSize(inputSize), outputSize(outputSize), cublasHandle(cublasHandle) {
@@ -16,9 +16,12 @@ Layers::Dense::Dense(int inputSize, int outputSize, cublasHandle_t cublasHandle)
initializeWeights();
initializeBiases();
d_weights = nullptr;
d_biases = nullptr;
// Allocate GPU memory for weights and biases
CUDA_CHECK(cudaMalloc((void**)&d_weights, sizeof(float) * inputSize * outputSize));
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * biases.size()));
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * outputSize));
toCuda();
}
@@ -30,43 +33,43 @@ Layers::Dense::~Dense() {
}
void Layers::Dense::initializeWeights() {
int numWeights = inputSize * outputSize;
std::random_device rd;
std::mt19937 gen(rd());
std::normal_distribution<float> dist(0.0f, 0.01f); // Xavier initialization
for (int i = 0; i < outputSize; ++i) {
for (int j = 0; j < inputSize; ++j) {
int idx = IDX2C(i, j, inputSize);
weights[idx] = dist(gen);
for (int j = 0; j < inputSize; ++j) {
for (int i = 0; i < outputSize; ++i) {
int idx = IDX2C(i, j, outputSize);
weights[idx] = 0.0f;
}
}
}
void Layers::Dense::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.1f);
std::fill(biases.begin(), biases.end(), 0.0f);
}
void Layers::Dense::forward(const float* d_input, float* d_output) {
const float alpha = 1.0f;
const float beta = 1.0f;
cublasSgemv(cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights, inputSize, d_input, 1, &beta, d_output, 1);
cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1);
CUBLAS_CHECK(cublasSgemv(cublasHandle, CUBLAS_OP_N, inputSize, outputSize, &alpha, d_weights, inputSize, d_input, 1, &beta, d_output, 1));
CUBLAS_CHECK(cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1));
}
void Layers::Dense::toCuda() {
CUBLAS_CHECK(cublasSetMatrix(outputSize, inputSize, sizeof(float), weights.data(), inputSize, d_weights, outputSize));
CUBLAS_CHECK(cublasSetMatrix(outputSize, inputSize, sizeof(float), weights.data(), outputSize, d_weights, outputSize));
CUBLAS_CHECK(cublasSetVector(biases.size(), sizeof(float), biases.data(), 1, d_biases, 1));
}
void Layers::Dense::setWeights(const std::vector<std::vector<float>>& weights_input) {
int numWeights = inputSize * outputSize;
for (int i = 0; i < outputSize; ++i) {
for (int j = 0; j < inputSize; ++j) {
int idx = IDX2C(i, j, inputSize);
if (weights.size() != numWeights) {
std::cerr << "Invalid number of weights" << std::endl;
exit(EXIT_FAILURE);
}
for (int j = 0; j < inputSize; ++j) {
for (int i = 0; i < outputSize; ++i) {
int idx = IDX2C(i, j, outputSize);
weights[idx] = weights_input[i][j];
}
}