Clarify port and api key assignments

This commit is contained in:
2025-10-26 15:32:40 +01:00
parent a5e9e01ff4
commit 7509722dfa
3 changed files with 8 additions and 1 deletions

View File

@@ -138,7 +138,7 @@ go build -o llamactl ./cmd/server
1. Open http://localhost:8080
2. Click "Create Instance"
3. Choose backend type (llama.cpp, MLX, or vLLM)
4. Configure your model and options
4. Configure your model and options (ports and API keys are auto-assigned)
5. Start the instance and use it with any OpenAI-compatible client
## Configuration

View File

@@ -59,6 +59,10 @@ Each instance is displayed as a card showing:
- **llama.cpp**: Threads, context size, GPU layers, port, etc.
- **MLX**: Temperature, top-p, adapter path, Python environment, etc.
- **vLLM**: Tensor parallel size, GPU memory utilization, quantization, etc.
!!! tip "Auto-Assignment"
Llamactl automatically assigns ports from the configured port range (default: 8000-9000) and generates API keys if authentication is enabled. You typically don't need to manually specify these values.
8. Click **"Create"** to save the instance
**Via API**

View File

@@ -33,6 +33,9 @@ You should see the Llamactl web interface.
- **Model**: Model path or huggingface repo
- **Additional Options**: Backend-specific parameters
!!! tip "Auto-Assignment"
Llamactl automatically assigns ports from the configured port range (default: 8000-9000) and generates API keys if authentication is enabled. You typically don't need to manually specify these values.
3. Click "Create Instance"
## Start Your Instance