Simplify README.md

This commit is contained in:
2025-10-26 13:43:44 +01:00
parent 108a977a9c
commit 52d8c2a082

204
README.md
View File

@@ -4,133 +4,32 @@
**Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.**
## Features
### 🚀 Easy Model Management
- **Multiple Model Serving**: Run different models simultaneously (7B for speed, 70B for quality)
- **On-Demand Instance Start**: Automatically launch instances upon receiving API requests
- **State Persistence**: Ensure instances remain intact across server restarts
### 🔗 Universal Compatibility
- **OpenAI API Compatible**: Drop-in replacement - route requests by instance name
- **Multi-Backend Support**: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
- **Docker Support**: Run backends in containers
### 🌐 User-Friendly Interface
- **Web Dashboard**: Modern React UI for visual management (unlike CLI-only tools)
- **API Key Authentication**: Separate keys for management vs inference access
### ⚡ Smart Operations
- **Instance Monitoring**: Health checks, auto-restart, log management
- **Smart Resource Management**: Idle timeout, LRU eviction, and configurable instance limits
- **Environment Variables**: Set custom environment variables per instance for advanced configuration
### 🔗 Remote Instance Deployment
- **Remote Node Support**: Deploy instances on remote hosts
- **Central Management**: Manage remote instances from a single dashboard
- **Seamless Routing**: Automatic request routing to remote instances
📚 **[Full Documentation →](https://llamactl.org)**
![Dashboard Screenshot](docs/images/dashboard.png)
## Features
### 🚀 Easy Model Management
- **Multiple Models Simultaneously**: Run different models at the same time (7B for speed, 70B for quality)
- **Smart Resource Management**: Automatic idle timeout, LRU eviction, and configurable instance limits
- **Web Dashboard**: Modern React UI for managing instances, monitoring health, and viewing logs
### 🔗 Flexible Integration
- **OpenAI API Compatible**: Drop-in replacement - route requests to different models by instance name
- **Multi-Backend Support**: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
- **Docker Ready**: Run backends in containers with full GPU support
### 🌐 Distributed Deployment
- **Remote Instances**: Deploy instances on remote hosts
- **Central Management**: Manage everything from a single dashboard with automatic routing
## Quick Start
```bash
# 1. Install backend (one-time setup)
# For llama.cpp: https://github.com/ggml-org/llama.cpp#quick-start
# For MLX on macOS: pip install mlx-lm
# For vLLM: pip install vllm
# Or use Docker - no local installation required
# 2. Download and run llamactl
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-linux-amd64.tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# 3. Start the server
llamactl
# Access dashboard at http://localhost:8080
```
## Usage
### Create and manage instances via web dashboard:
1. Open http://localhost:8080
2. Click "Create Instance"
3. Choose backend type (llama.cpp, MLX, or vLLM)
4. Set model path and backend-specific options
5. Configure environment variables if needed (optional)
6. Start or stop the instance
### Or use the REST API:
```bash
# Create llama.cpp instance
curl -X POST localhost:8080/api/v1/instances/my-7b-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "llama_cpp", "backend_options": {"model": "/path/to/model.gguf", "gpu_layers": 32}}'
# Create MLX instance (macOS)
curl -X POST localhost:8080/api/v1/instances/my-mlx-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "mlx_lm", "backend_options": {"model": "mlx-community/Mistral-7B-Instruct-v0.3-4bit"}}'
# Create vLLM instance with environment variables
curl -X POST localhost:8080/api/v1/instances/my-vllm-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "vllm", "backend_options": {"model": "microsoft/DialoGPT-medium", "tensor_parallel_size": 2}, "environment": {"CUDA_VISIBLE_DEVICES": "0,1", "NCCL_DEBUG": "INFO"}}'
# Use with OpenAI SDK
curl -X POST localhost:8080/v1/chat/completions \
-H "Authorization: Bearer your-key" \
-d '{"model": "my-7b-model", "messages": [{"role": "user", "content": "Hello!"}]}'
```
## Installation
### Option 1: Download Binary (Recommended)
```bash
# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# Or download manually from the releases page:
# https://github.com/lordmathis/llamactl/releases/latest
# Windows - Download from releases page
```
### Option 2: Docker (No local backend installation required)
```bash
# Clone repository and build Docker images
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
mkdir -p data/llamacpp data/vllm models
# Build and start llamactl with llama.cpp CUDA backend
docker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d
# Build and start llamactl with vLLM CUDA backend
docker-compose -f docker/docker-compose.yml up llamactl-vllm -d
# Build from source using multi-stage build
docker build -f docker/Dockerfile.source -t llamactl:source .
```
**Features:** CUDA support, automatic latest release installation, no backend dependencies.
**Note:** Dockerfiles are configured for CUDA. Adapt base images for other platforms (CPU, ROCm, etc.).
For detailed Docker setup and configuration, see the [Installation Guide](docs/getting-started/installation.md).
### Option 3: Build from Source
Requires Go 1.24+ and Node.js 22+
```bash
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
cd webui && npm ci && npm run build && cd ..
go build -o llamactl ./cmd/server
```
1. Install a backend (llama.cpp, MLX, or vLLM) - see [Prerequisites](#prerequisites) below
2. [Download llamactl](#installation) for your platform
3. Run `llamactl` and open http://localhost:8080
4. Create an instance and start inferencing!
## Prerequisites
@@ -175,9 +74,9 @@ pip install vllm
# Or use Docker - no local installation required
```
## Backend Docker Support
### Docker Support
llamactl can run backends in Docker containers:
llamactl can run backends in Docker containers, eliminating the need for local backend installation:
```yaml
backends:
@@ -189,9 +88,58 @@ backends:
enabled: true
```
**Requirements:** Docker installed and running. For GPU support: nvidia-docker2 (Linux) or Docker Desktop with GPU support.
## Installation
For detailed Docker configuration options, see the [Configuration Guide](docs/getting-started/configuration.md).
### Option 1: Download Binary (Recommended)
```bash
# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# Or download manually from the releases page:
# https://github.com/lordmathis/llamactl/releases/latest
# Windows - Download from releases page
```
### Option 2: Docker (No local backend installation required)
```bash
# Clone repository and build Docker images
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
mkdir -p data/llamacpp data/vllm models
# Build and start llamactl with llama.cpp CUDA backend
docker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d
# Build and start llamactl with vLLM CUDA backend
docker-compose -f docker/docker-compose.yml up llamactl-vllm -d
# Build from source using multi-stage build
docker build -f docker/Dockerfile.source -t llamactl:source .
```
**Note:** Dockerfiles are configured for CUDA. Adapt base images for other platforms (CPU, ROCm, etc.).
### Option 3: Build from Source
Requires Go 1.24+ and Node.js 22+
```bash
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
cd webui && npm ci && npm run build && cd ..
go build -o llamactl ./cmd/server
```
## Usage
1. Open http://localhost:8080
2. Click "Create Instance"
3. Choose backend type (llama.cpp, MLX, or vLLM)
4. Configure your model and options
5. Start the instance and use it with any OpenAI-compatible client
## Configuration
@@ -213,7 +161,7 @@ backends:
docker:
enabled: false
image: "ghcr.io/ggml-org/llama.cpp:server"
args: ["run", "--rm", "--network", "host", "--gpus", "all"]
args: ["run", "--rm", "--network", "host", "--gpus", "all", "-v", "~/.local/share/llamactl/llama.cpp:/root/.cache/llama.cpp"]
environment: {} # Environment variables for the container
vllm:
@@ -223,7 +171,7 @@ backends:
docker:
enabled: false
image: "vllm/vllm-openai:latest"
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g", "-v", "~/.local/share/llamactl/huggingface:/root/.cache/huggingface"]
environment: {} # Environment variables for the container
mlx: