Skip to content

Troubleshooting

Issues specific to Llamactl deployment and operation.

Configuration Issues

Invalid Configuration

Problem: Invalid configuration preventing startup

Solutions:
1. Use minimal configuration:

server:
  host: "0.0.0.0"
  port: 8080
instances:
  port_range: [8000, 9000]

  1. Check data directory permissions:
    # Ensure data directory is writable (default: ~/.local/share/llamactl)
    mkdir -p ~/.local/share/llamactl/{instances,logs}
    

Instance Management Issues

Instance Fails to Start

Problem: Instance fails to start or immediately stops

Solutions:

  1. Check instance logs to see the actual error:

    curl http://localhost:8080/api/v1/instances/{name}/logs
    # Or check log files directly
    tail -f ~/.local/share/llamactl/logs/{instance-name}.log
    

  2. Verify backend is installed:

    • llama.cpp: Ensure llama-server is in PATH
    • MLX: Ensure mlx-lm Python package is installed
    • vLLM: Ensure vllm Python package is installed
  3. Check model path and format:

    • Use absolute paths to model files
    • Verify model format matches backend (GGUF for llama.cpp, etc.)
  4. Verify backend command configuration:

    • Check that the backend command is correctly configured in the global config
    • For virtual environments, specify the full path to the command (e.g., /path/to/venv/bin/mlx_lm.server)
    • See the Configuration Guide for backend configuration details
    • Test the backend directly (see Backend-Specific Issues below)

Backend-Specific Issues

Problem: Model loading, memory, GPU, or performance issues

Most model-specific issues (memory, GPU configuration, performance tuning) are backend-specific and should be resolved by consulting the respective backend documentation:

llama.cpp:
- llama.cpp GitHub
- llama-server README

MLX:
- MLX-LM GitHub
- MLX-LM Server Guide

vLLM:
- vLLM Documentation
- OpenAI Compatible Server
- vllm serve Command

Testing backends directly:

Testing your model and configuration directly with the backend helps determine if the issue is with llamactl or the backend itself:

# llama.cpp
llama-server --model /path/to/model.gguf --port 8081

# MLX
mlx_lm.server --model mlx-community/Mistral-7B-Instruct-v0.3-4bit --port 8081

# vLLM
vllm serve microsoft/DialoGPT-medium --port 8081

API and Network Issues

CORS Errors

Problem: Web UI shows CORS errors in browser console

Solutions:
1. Configure allowed origins:

server:
  allowed_origins:
    - "http://localhost:3000"
    - "https://yourdomain.com"

Authentication Issues

Problem: API requests failing with authentication errors

Solutions:
1. Disable authentication temporarily:

auth:
  require_management_auth: false
  require_inference_auth: false

  1. Configure API keys:

    auth:
      management_keys:
        - "your-management-key"
      inference_keys:
        - "your-inference-key"
    

  2. Use correct Authorization header:

    curl -H "Authorization: Bearer your-api-key" \
      http://localhost:8080/api/v1/instances
    

Remote Node Issues

Node Configuration

Problem: Remote instances not appearing or cannot be managed

Solutions:
1. Verify node configuration:

local_node: "main"  # Must match a key in nodes map
nodes:
  main:
    address: ""     # Empty for local node
  worker1:
    address: "http://worker1.internal:8080"
    api_key: "secure-key"  # Must match worker1's management key

  1. Check node name consistency:
  2. local_node on each node must match what other nodes call it
  3. Node names are case-sensitive

  4. Test remote node connectivity:

    curl -H "Authorization: Bearer remote-node-key" \
      http://remote-node:8080/api/v1/instances
    

Debugging and Logs

Viewing Instance Logs

# Get instance logs via API
curl http://localhost:8080/api/v1/instances/{name}/logs

# Or check log files directly
tail -f ~/.local/share/llamactl/logs/{instance-name}.log

Enable Debug Logging

export LLAMACTL_LOG_LEVEL=debug
llamactl

Getting Help

When reporting issues, include:

  1. System information:

    llamactl --version
    

  2. Configuration file (remove sensitive keys)

  3. Relevant log output

  4. Steps to reproduce the issue