# llamactl ![Build and Release](https://github.com/lordmathis/llamactl/actions/workflows/release.yaml/badge.svg) ![Go Tests](https://github.com/lordmathis/llamactl/actions/workflows/go_test.yaml/badge.svg) ![WebUI Tests](https://github.com/lordmathis/llamactl/actions/workflows/webui_test.yaml/badge.svg) **Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.** ## Features ### 🚀 Easy Model Management - **Multiple Model Serving**: Run different models simultaneously (7B for speed, 70B for quality) - **On-Demand Instance Start**: Automatically launch instances upon receiving API requests - **State Persistence**: Ensure instances remain intact across server restarts ### 🔗 Universal Compatibility - **OpenAI API Compatible**: Drop-in replacement - route requests by instance name - **Multi-Backend Support**: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM - **Docker Support**: Run backends in containers ### 🌐 User-Friendly Interface - **Web Dashboard**: Modern React UI for visual management (unlike CLI-only tools) - **API Key Authentication**: Separate keys for management vs inference access ### ⚡ Smart Operations - **Instance Monitoring**: Health checks, auto-restart, log management - **Smart Resource Management**: Idle timeout, LRU eviction, and configurable instance limits - **Environment Variables**: Set custom environment variables per instance for advanced configuration ![Dashboard Screenshot](docs/images/dashboard.png) ## Quick Start ```bash # 1. Install backend (one-time setup) # For llama.cpp: https://github.com/ggml-org/llama.cpp#quick-start # For MLX on macOS: pip install mlx-lm # For vLLM: pip install vllm # Or use Docker - no local installation required # 2. Download and run llamactl LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/') curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-linux-amd64.tar.gz | tar -xz sudo mv llamactl /usr/local/bin/ # 3. Start the server llamactl # Access dashboard at http://localhost:8080 ``` ## Usage ### Create and manage instances via web dashboard: 1. Open http://localhost:8080 2. Click "Create Instance" 3. Choose backend type (llama.cpp, MLX, or vLLM) 4. Set model path and backend-specific options 5. Configure environment variables if needed (optional) 6. Start or stop the instance ### Or use the REST API: ```bash # Create llama.cpp instance curl -X POST localhost:8080/api/v1/instances/my-7b-model \ -H "Authorization: Bearer your-key" \ -d '{"backend_type": "llama_cpp", "backend_options": {"model": "/path/to/model.gguf", "gpu_layers": 32}}' # Create MLX instance (macOS) curl -X POST localhost:8080/api/v1/instances/my-mlx-model \ -H "Authorization: Bearer your-key" \ -d '{"backend_type": "mlx_lm", "backend_options": {"model": "mlx-community/Mistral-7B-Instruct-v0.3-4bit"}}' # Create vLLM instance with environment variables curl -X POST localhost:8080/api/v1/instances/my-vllm-model \ -H "Authorization: Bearer your-key" \ -d '{"backend_type": "vllm", "backend_options": {"model": "microsoft/DialoGPT-medium", "tensor_parallel_size": 2}, "environment": {"CUDA_VISIBLE_DEVICES": "0,1", "NCCL_DEBUG": "INFO"}}' # Use with OpenAI SDK curl -X POST localhost:8080/v1/chat/completions \ -H "Authorization: Bearer your-key" \ -d '{"model": "my-7b-model", "messages": [{"role": "user", "content": "Hello!"}]}' ``` ## Installation ### Option 1: Download Binary (Recommended) ```bash # Linux/macOS - Get latest version and download LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/') curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz sudo mv llamactl /usr/local/bin/ # Or download manually from the releases page: # https://github.com/lordmathis/llamactl/releases/latest # Windows - Download from releases page ``` ### Option 2: Docker (No local backend installation required) ```bash # Clone repository and build Docker images git clone https://github.com/lordmathis/llamactl.git cd llamactl mkdir -p data/llamacpp data/vllm models # Build and start llamactl with llama.cpp CUDA backend docker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d # Build and start llamactl with vLLM CUDA backend docker-compose -f docker/docker-compose.yml up llamactl-vllm -d # Build from source using multi-stage build docker build -f docker/Dockerfile.source -t llamactl:source . ``` **Features:** CUDA support, automatic latest release installation, no backend dependencies. **Note:** Dockerfiles are configured for CUDA. Adapt base images for other platforms (CPU, ROCm, etc.). For detailed Docker setup and configuration, see the [Installation Guide](docs/getting-started/installation.md). ### Option 3: Build from Source Requires Go 1.24+ and Node.js 22+ ```bash git clone https://github.com/lordmathis/llamactl.git cd llamactl cd webui && npm ci && npm run build && cd .. go build -o llamactl ./cmd/server ``` ## Prerequisites ### Backend Dependencies **For llama.cpp backend:** You need `llama-server` from [llama.cpp](https://github.com/ggml-org/llama.cpp) installed: ```bash # Homebrew (macOS) brew install llama.cpp # Or build from source - see llama.cpp docs # Or use Docker - no local installation required ``` **For MLX backend (macOS only):** You need MLX-LM installed: ```bash # Install via pip (requires Python 3.8+) pip install mlx-lm # Or in a virtual environment (recommended) python -m venv mlx-env source mlx-env/bin/activate pip install mlx-lm ``` **For vLLM backend:** You need vLLM installed: ```bash # Install via pip (requires Python 3.8+, GPU required) pip install vllm # Or in a virtual environment (recommended) python -m venv vllm-env source vllm-env/bin/activate pip install vllm # Or use Docker - no local installation required ``` ## Backend Docker Support llamactl can run backends in Docker containers: ```yaml backends: llama-cpp: docker: enabled: true vllm: docker: enabled: true ``` **Requirements:** Docker installed and running. For GPU support: nvidia-docker2 (Linux) or Docker Desktop with GPU support. For detailed Docker configuration options, see the [Configuration Guide](docs/getting-started/configuration.md). ## Configuration llamactl works out of the box with sensible defaults. ```yaml server: host: "0.0.0.0" # Server host to bind to port: 8080 # Server port to bind to allowed_origins: ["*"] # Allowed CORS origins (default: all) enable_swagger: false # Enable Swagger UI for API docs backends: llama-cpp: command: "llama-server" args: [] environment: {} # Environment variables for the backend process docker: enabled: false image: "ghcr.io/ggml-org/llama.cpp:server" args: ["run", "--rm", "--network", "host", "--gpus", "all"] environment: {} # Environment variables for the container vllm: command: "vllm" args: ["serve"] environment: {} # Environment variables for the backend process docker: enabled: false image: "vllm/vllm-openai:latest" args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"] environment: {} # Environment variables for the container mlx: command: "mlx_lm.server" args: [] environment: {} # Environment variables for the backend process instances: port_range: [8000, 9000] # Port range for instances data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below) configs_dir: ~/.local/share/llamactl/instances # Instance configs directory logs_dir: ~/.local/share/llamactl/logs # Logs directory auto_create_dirs: true # Auto-create data/config/logs dirs if missing max_instances: -1 # Max instances (-1 = unlimited) max_running_instances: -1 # Max running instances (-1 = unlimited) enable_lru_eviction: true # Enable LRU eviction for idle instances default_auto_restart: true # Auto-restart new instances by default default_max_restarts: 3 # Max restarts for new instances default_restart_delay: 5 # Restart delay (seconds) for new instances default_on_demand_start: true # Default on-demand start setting on_demand_start_timeout: 120 # Default on-demand start timeout in seconds timeout_check_interval: 5 # Idle instance timeout check in minutes auth: require_inference_auth: true # Require auth for inference endpoints inference_keys: [] # Keys for inference endpoints require_management_auth: true # Require auth for management endpoints management_keys: [] # Keys for management endpoints ``` For detailed configuration options including environment variables, file locations, and advanced settings, see the [Configuration Guide](docs/getting-started/configuration.md). ## License MIT License - see [LICENSE](LICENSE) file.