diff --git a/dev/__pycache__/readme_sync.cpython-311.pyc b/dev/__pycache__/readme_sync.cpython-311.pyc index 657627f..11bd050 100644 Binary files a/dev/__pycache__/readme_sync.cpython-311.pyc and b/dev/__pycache__/readme_sync.cpython-311.pyc differ diff --git a/dev/getting-started/configuration/index.html b/dev/getting-started/configuration/index.html index 8885de0..94adbb7 100644 --- a/dev/getting-started/configuration/index.html +++ b/dev/getting-started/configuration/index.html @@ -558,18 +558,18 @@ - - - - - -
Environment Variables:
-- LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false)
-- LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys
-- LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false)
-- LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
View all available command line options:
-llamactl --help
+Environment Variables:
+- LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false)
+- LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys
+- LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false)
+- LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
+Remote Node Configuration¶
+llamactl supports remote node deployments. Configure remote nodes to deploy instances on remote hosts and manage them centrally.
+local_node: "main" # Name of the local node (default: "main")
+nodes: # Node configuration map
+ main: # Local node (empty address means local)
+ address: "" # Not used for local node
+ api_key: "" # Not used for local node
+ worker1: # Remote worker node
+ address: "http://192.168.1.10:8080"
+ api_key: "worker1-api-key" # Management API key for authentication
-You can also override configuration using command line flags when starting llamactl.
+Node Configuration Fields:
+- local_node: Specifies which node in the nodes map represents the local node
+- nodes: Map of node configurations
+ - address: HTTP/HTTPS URL of the remote node (empty for local node)
+ - api_key: Management API key for authenticating with the remote node
+Environment Variables:
+- LLAMACTL_LOCAL_NODE - Name of the local node
@@ -1070,7 +1087,7 @@
- October 4, 2025
+ October 9, 2025
diff --git a/dev/getting-started/installation/index.html b/dev/getting-started/installation/index.html
index af94cbb..4c0c80e 100644
--- a/dev/getting-started/installation/index.html
+++ b/dev/getting-started/installation/index.html
@@ -525,6 +525,15 @@
+
+
+
+
+
+ Remote Node Installation
+
+
+
@@ -829,6 +838,15 @@
+
+
+
+
+
+ Remote Node Installation
+
+
+
@@ -982,12 +1000,17 @@
# Build the application
go build -o llamactl ./cmd/server
For deployments with remote nodes: +- Install llamactl on each node using any of the methods above +- Configure API keys for authentication between nodes
Verify your installation by checking the version:
Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
+For remote node deployments, see the Configuration Guide for node setup instructions.
@@ -1008,7 +1031,7 @@ - September 29, 2025 + October 9, 2025 diff --git a/dev/index.html b/dev/index.html index f6153da..6c1c1a6 100644 --- a/dev/index.html +++ b/dev/index.html @@ -426,6 +426,15 @@ + + +
Welcome to the Llamactl documentation!
"},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
"},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"If you need help or have questions:
MIT License - see the LICENSE file.
"},{"location":"getting-started/configuration/","title":"Configuration","text":"llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:
Defaults < Configuration file < Environment variables\n llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.
"},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"Here's the default configuration with all available options:
server:\n host: \"0.0.0.0\" # Server host to bind to\n port: 8080 # Server port to bind to\n allowed_origins: [\"*\"] # Allowed CORS origins (default: all)\n allowed_headers: [\"*\"] # Allowed CORS headers (default: all)\n enable_swagger: false # Enable Swagger UI for API docs\n\nbackends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n response_headers: {} # Additional response headers to send with responses\n\ninstances:\n port_range: [8000, 9000] # Port range for instances\n data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)\n configs_dir: ~/.local/share/llamactl/instances # Instance configs directory\n logs_dir: ~/.local/share/llamactl/logs # Logs directory\n auto_create_dirs: true # Auto-create data/config/logs dirs if missing\n max_instances: -1 # Max instances (-1 = unlimited)\n max_running_instances: -1 # Max running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Auto-restart new instances by default\n default_max_restarts: 3 # Max restarts for new instances\n default_restart_delay: 5 # Restart delay (seconds) for new instances\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Idle instance timeout check in minutes\n\nauth:\n require_inference_auth: true # Require auth for inference endpoints\n inference_keys: [] # Keys for inference endpoints\n require_management_auth: true # Require auth for management endpoints\n management_keys: [] # Keys for management endpoints\n"},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"Configuration files are searched in the following locations (in order of precedence):
Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml
macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml
Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml
You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.
server:\n host: \"0.0.0.0\" # Server host to bind to (default: \"0.0.0.0\")\n port: 8080 # Server port to bind to (default: 8080)\n allowed_origins: [\"*\"] # CORS allowed origins (default: [\"*\"])\n allowed_headers: [\"*\"] # CORS allowed headers (default: [\"*\"])\n enable_swagger: false # Enable Swagger UI (default: false)\n Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)
backends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n # MLX does not support Docker\n response_headers: {} # Additional response headers to send with responses\n Backend Configuration Fields: - command: Executable name/path for the backend - args: Default arguments prepended to all instances - environment: Environment variables for the backend process (optional) - response_headers: Additional response headers to send with responses (optional) - docker: Docker-specific configuration (optional) - enabled: Boolean flag to enable Docker runtime - image: Docker image to use - args: Additional arguments passed to docker run - environment: Environment variables for the container (optional)
If llamactl is behind an NGINX proxy, X-Accel-Buffering: no response header may be required for NGINX to properly stream the responses without buffering.
Environment Variables:
LlamaCpp Backend: - LLAMACTL_LLAMACPP_COMMAND - LlamaCpp executable command - LLAMACTL_LLAMACPP_ARGS - Space-separated default arguments - LLAMACTL_LLAMACPP_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_LLAMACPP_DOCKER_IMAGE - Docker image to use - LLAMACTL_LLAMACPP_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_LLAMACPP_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
VLLM Backend: - LLAMACTL_VLLM_COMMAND - VLLM executable command - LLAMACTL_VLLM_ARGS - Space-separated default arguments - LLAMACTL_VLLM_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_VLLM_DOCKER_IMAGE - Docker image to use - LLAMACTL_VLLM_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_VLLM_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
MLX Backend: - LLAMACTL_MLX_COMMAND - MLX executable command - LLAMACTL_MLX_ARGS - Space-separated default arguments - LLAMACTL_MLX_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_MLX_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
instances:\n port_range: [8000, 9000] # Port range for instances (default: [8000, 9000])\n data_dir: \"~/.local/share/llamactl\" # Directory for all llamactl data (default varies by OS)\n configs_dir: \"~/.local/share/llamactl/instances\" # Directory for instance configs (default: data_dir/instances)\n logs_dir: \"~/.local/share/llamactl/logs\" # Directory for instance logs (default: data_dir/logs)\n auto_create_dirs: true # Automatically create data/config/logs directories (default: true)\n max_instances: -1 # Maximum instances (-1 = unlimited)\n max_running_instances: -1 # Maximum running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Default auto-restart setting\n default_max_restarts: 3 # Default maximum restart attempts\n default_restart_delay: 5 # Default restart delay in seconds\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Default instance timeout check interval in minutes\n Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes
auth:\n require_inference_auth: true # Require API key for OpenAI endpoints (default: true)\n inference_keys: [] # List of valid inference API keys\n require_management_auth: true # Require API key for management endpoints (default: true)\n management_keys: [] # List of valid management API keys\n Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
View all available command line options:
llamactl --help\n You can also override configuration using command line flags when starting llamactl.
"},{"location":"getting-started/installation/","title":"Installation","text":"This guide will walk you through installing Llamactl on your system.
"},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"llamactl supports multiple backends. Install at least one:
For llama.cpp backend (all platforms):
You need llama-server from llama.cpp installed:
# Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n Or build from source - see llama.cpp docs
For MLX backend (macOS only):
MLX provides optimized inference on Apple Silicon. Install MLX-LM:
# Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)
For vLLM backend:
vLLM provides high-throughput distributed serving for LLMs. Install vLLM:
# Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n"},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"Download the latest release from the GitHub releases page:
# Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n"},{"location":"getting-started/installation/#option-2-docker","title":"Option 2: Docker","text":"llamactl provides Dockerfiles for creating Docker images with backends pre-installed. The resulting images include the latest llamactl release with the respective backend.
Available Dockerfiles (CUDA): - llamactl with llama.cpp CUDA: docker/Dockerfile.llamacpp (based on ghcr.io/ggml-org/llama.cpp:server-cuda) - llamactl with vLLM CUDA: docker/Dockerfile.vllm (based on vllm/vllm-openai:latest) - llamactl built from source: docker/Dockerfile.source (multi-stage build with webui)
Note: These Dockerfiles are configured for CUDA. For other platforms (CPU, ROCm, Vulkan, etc.), adapt the base image. For llama.cpp, see available tags at llama.cpp Docker docs. For vLLM, check vLLM docs.
"},{"location":"getting-started/installation/#using-docker-compose","title":"Using Docker Compose","text":"# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Create directories for data and models\nmkdir -p data/llamacpp data/vllm models\n\n# Start llamactl with llama.cpp backend\ndocker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d\n\n# Or start llamactl with vLLM backend\ndocker-compose -f docker/docker-compose.yml up llamactl-vllm -d\n Access the dashboard at: - llamactl with llama.cpp: http://localhost:8080 - llamactl with vLLM: http://localhost:8081
"},{"location":"getting-started/installation/#using-docker-build-and-run","title":"Using Docker Build and Run","text":"llamactl with llama.cpp CUDA:
docker build -f docker/Dockerfile.llamacpp -t llamactl:llamacpp-cuda .\ndocker run -d \\\n --name llamactl-llamacpp \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/llama.cpp:/root/.cache/llama.cpp \\\n llamactl:llamacpp-cuda\n llamactl with vLLM CUDA:
docker build -f docker/Dockerfile.vllm -t llamactl:vllm-cuda .\ndocker run -d \\\n --name llamactl-vllm \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/huggingface:/root/.cache/huggingface \\\n llamactl:vllm-cuda\n llamactl built from source:
docker build -f docker/Dockerfile.source -t llamactl:source .\ndocker run -d \\\n --name llamactl \\\n -p 8080:8080 \\\n llamactl:source\n"},{"location":"getting-started/installation/#option-3-build-from-source","title":"Option 3: Build from Source","text":"Requirements: - Go 1.24 or later - Node.js 22 or later - Git
If you prefer to build from source:
# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n"},{"location":"getting-started/installation/#verification","title":"Verification","text":"Verify your installation by checking the version:
llamactl --version\n"},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
"},{"location":"getting-started/quick-start/","title":"Quick Start","text":"This guide will help you get Llamactl up and running in just a few minutes.
"},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"Start the Llamactl server:
llamactl\n By default, Llamactl will start on http://localhost:8080.
Open your web browser and navigate to:
http://localhost:8080\n Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
You should see the Llamactl web interface.
"},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"Additional Options: Backend-specific parameters
Click \"Create Instance\"
Once created, you can:
Here are basic example configurations for each backend:
llama.cpp backend:
{\n \"name\": \"llama2-7b\",\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n \"threads\": 4,\n \"ctx_size\": 2048,\n \"gpu_layers\": 32\n }\n}\n MLX backend (macOS only):
{\n \"name\": \"mistral-mlx\",\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"max_tokens\": 2048\n }\n}\n vLLM backend:
{\n \"name\": \"dialogpt-vllm\",\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n }\n}\n"},{"location":"getting-started/quick-start/#docker-support","title":"Docker Support","text":"Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:
backends:\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n docker:\n enabled: true\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n"},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"You can also manage instances via the REST API:
# List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\"\n }\n }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n"},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
"},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
curl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello! Can you help me write a Python function?\"\n }\n ],\n \"max_tokens\": 150,\n \"temperature\": 0.7\n }'\n"},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"You can also use the official OpenAI Python client:
from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n base_url=\"http://localhost:8080/v1\",\n api_key=\"not-needed\" # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n model=\"my-model\", # Use the name of your instance\n messages=[\n {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n ],\n max_tokens=200,\n temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n"},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"Get a list of running instances (models) in OpenAI-compatible format:
curl http://localhost:8080/v1/models\n"},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"Complete reference for the Llamactl REST API.
"},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"All API endpoints are relative to the base URL:
http://localhost:8080/api/v1\n"},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:
curl -H \"Authorization: Bearer <your-api-key>\" \\\n http://localhost:8080/api/v1/instances\n The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints
"},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"Get the version information of the llamactl server.
GET /api/v1/version\n Response:
Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n"},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"Get help text for the llama-server command.
GET /api/v1/server/help\n Response: Plain text help output from llama-server --help
Get version information of the llama-server binary.
GET /api/v1/server/version\n Response: Plain text version output from llama-server --version
List available devices for llama-server.
GET /api/v1/server/devices\n Response: Plain text device list from llama-server --list-devices
Get a list of all instances.
GET /api/v1/instances\n Response:
[\n {\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n }\n]\n"},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"Get detailed information about a specific instance.
GET /api/v1/instances/{name}\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"Create and start a new instance.
POST /api/v1/instances/{name}\n Request Body: JSON object with instance configuration. Common fields include:
backend_type: Backend type (llama_cpp, mlx_lm, or vllm)backend_options: Backend-specific configurationauto_restart: Enable automatic restart on failuremax_restarts: Maximum restart attemptsrestart_delay: Delay between restarts in secondson_demand_start: Start instance when receiving requestsidle_timeout: Idle timeout in minutesenvironment: Environment variables as key-value pairsSee Managing Instances for complete configuration options.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"Update an existing instance configuration. See Managing Instances for available configuration options.
PUT /api/v1/instances/{name}\n Request Body: JSON object with configuration fields to update.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"Stop and remove an instance.
DELETE /api/v1/instances/{name}\n Response: 204 No Content
Start a stopped instance.
POST /api/v1/instances/{name}/start\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance
Stop a running instance.
POST /api/v1/instances/{name}/stop\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"stopped\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"Restart an instance (stop then start).
POST /api/v1/instances/{name}/restart\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"Retrieve instance logs.
GET /api/v1/instances/{name}/logs\n Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)
Response: Plain text log output
Example:
curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n"},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"Proxy HTTP requests directly to the llama-server instance.
GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.
Example - Check Instance Health:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/proxy/health\n This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.
Error Responses: - 503 Service Unavailable: Instance is not running
Llamactl provides OpenAI-compatible endpoints for inference operations.
"},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"List all instances in OpenAI-compatible format.
GET /v1/models\n Response:
{\n \"object\": \"list\",\n \"data\": [\n {\n \"id\": \"llama2-7b\",\n \"object\": \"model\",\n \"created\": 1705312200,\n \"owned_by\": \"llamactl\"\n }\n ]\n}\n"},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"All OpenAI-compatible inference endpoints are available:
POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n Request Body: Standard OpenAI format with model field specifying the instance name
Example:
{\n \"model\": \"llama2-7b\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello, how are you?\"\n }\n ]\n}\n The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.
Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit
Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed
All endpoints may return error responses in the following format:
{\n \"error\": \"Error message description\"\n}\n"},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"200: Success201: Created204: No Content (successful deletion)400: Bad Request (invalid parameters or request body)401: Unauthorized (missing or invalid API key)403: Forbidden (insufficient permissions)404: Not Found (instance not found)409: Conflict (instance already exists, max instances reached)500: Internal Server Error503: Service Unavailable (instance not running)# Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0\",\n \"OMP_NUM_THREADS\": \"8\"\n }\n }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello!\"}\n ],\n \"max_tokens\": 100\n }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n"},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"You can also directly proxy requests to the llama-server instance:
# Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"prompt\": \"Hello, world!\",\n \"n_predict\": 50\n }'\n"},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
"},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"Parse a llama-server command string into instance options.
POST /api/v1/backends/llama-cpp/parse-command\n Request Body:
{\n \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n Response:
{\n \"backend_type\": \"llama_cpp\",\n \"llama_server_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"ctx_size\": 2048,\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"Parse an MLX-LM server command string into instance options.
POST /api/v1/backends/mlx/parse-command\n Request Body:
{\n \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"mlx_lm\",\n \"mlx_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"Parse a vLLM serve command string into instance options.
POST /api/v1/backends/vllm/parse-command\n Request Body:
{\n \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"vllm\",\n \"vllm_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error
The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:
go install github.com/swaggo/swag/cmd/swag@latestswag init -g cmd/server/main.go -o apidocsIf swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
http://localhost:8080/swagger/\n This provides a complete interactive interface for testing all API endpoints.
"},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.
"},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"Llamactl provides two ways to manage instances:
http://localhost:8080 with an intuitive dashboardIf authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session
"},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"Each instance is displayed as a card showing:
mlx-community/Mistral-7B-Instruct-v0.3-4bit)microsoft/DialoGPT-medium)# Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"threads\": 8,\n \"ctx_size\": 4096,\n \"gpu_layers\": 32\n }\n }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"top_p\": 0.9,\n \"max_tokens\": 2048\n },\n \"auto_restart\": true,\n \"max_restarts\": 3\n }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n },\n \"auto_restart\": true,\n \"on_demand_start\": true,\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0,1\",\n \"NCCL_DEBUG\": \"INFO\",\n \"PYTHONPATH\": \"/custom/path\"\n }\n }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n \"gpu_layers\": 32\n }\n }'\n"},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/start\n"},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/stop\n"},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"Modify instance settings:
curl -X PUT http://localhost:8080/api/instances/{name} \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_options\": {\n \"threads\": 8,\n \"context_size\": 4096\n }\n }'\n Note
Configuration changes require restarting the instance to take effect.
"},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"Check instance status in real-time:
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n"},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"curl -X DELETE http://localhost:8080/api/instances/{name}\n"},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs
"},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"Check the health status of your instances:
curl http://localhost:8080/api/instances/{name}/proxy/health\n"},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"Issues specific to Llamactl deployment and operation.
"},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"Problem: Invalid configuration preventing startup
Solutions: 1. Use minimal configuration:
server:\n host: \"0.0.0.0\"\n port: 8080\ninstances:\n port_range: [8000, 9000]\n # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\nProblem: Instance fails to start with model loading errors
Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files
Problem: Out of memory errors or system becomes unresponsive
Solutions: 1. Reduce context size:
{\n \"n_ctx\": 1024\n}\n Problem: GPU not being used effectively
Solutions: 1. Configure GPU layers:
{\n \"n_gpu_layers\": 35\n}\n"},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"Problem: Complex model loading, performance, or compatibility issues
Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:
Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions
Testing directly with llama-server:
# Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.
"},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"Problem: Web UI shows CORS errors in browser console
Solutions: 1. Configure allowed origins:
server:\n allowed_origins:\n - \"http://localhost:3000\"\n - \"https://yourdomain.com\"\n"},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"Problem: API requests failing with authentication errors
Solutions: 1. Disable authentication temporarily:
auth:\n require_management_auth: false\n require_inference_auth: false\n Configure API keys:
auth:\n management_keys:\n - \"your-management-key\"\n inference_keys:\n - \"your-inference-key\"\n Use correct Authorization header:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances\n # Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n"},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"export LLAMACTL_LOG_LEVEL=debug\nllamactl\n"},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"When reporting issues, include:
System information:
llamactl --version\n Configuration file (remove sensitive keys)
Relevant log output
Steps to reproduce the issue
Welcome to the Llamactl documentation!
"},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
"},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"If you need help or have questions:
MIT License - see the LICENSE file.
"},{"location":"getting-started/configuration/","title":"Configuration","text":"llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:
Defaults < Configuration file < Environment variables\n llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.
"},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"Here's the default configuration with all available options:
server:\n host: \"0.0.0.0\" # Server host to bind to\n port: 8080 # Server port to bind to\n allowed_origins: [\"*\"] # Allowed CORS origins (default: all)\n allowed_headers: [\"*\"] # Allowed CORS headers (default: all)\n enable_swagger: false # Enable Swagger UI for API docs\n\nbackends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n response_headers: {} # Additional response headers to send with responses\n\ninstances:\n port_range: [8000, 9000] # Port range for instances\n data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)\n configs_dir: ~/.local/share/llamactl/instances # Instance configs directory\n logs_dir: ~/.local/share/llamactl/logs # Logs directory\n auto_create_dirs: true # Auto-create data/config/logs dirs if missing\n max_instances: -1 # Max instances (-1 = unlimited)\n max_running_instances: -1 # Max running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Auto-restart new instances by default\n default_max_restarts: 3 # Max restarts for new instances\n default_restart_delay: 5 # Restart delay (seconds) for new instances\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Idle instance timeout check in minutes\n\nauth:\n require_inference_auth: true # Require auth for inference endpoints\n inference_keys: [] # Keys for inference endpoints\n require_management_auth: true # Require auth for management endpoints\n management_keys: [] # Keys for management endpoints\n\nlocal_node: \"main\" # Name of the local node (default: \"main\")\nnodes: # Node configuration for multi-node deployment\n main: # Default local node (empty config)\n"},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"Configuration files are searched in the following locations (in order of precedence):
Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml
macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml
Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml
You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.
server:\n host: \"0.0.0.0\" # Server host to bind to (default: \"0.0.0.0\")\n port: 8080 # Server port to bind to (default: 8080)\n allowed_origins: [\"*\"] # CORS allowed origins (default: [\"*\"])\n allowed_headers: [\"*\"] # CORS allowed headers (default: [\"*\"])\n enable_swagger: false # Enable Swagger UI (default: false)\n Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)
backends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n # MLX does not support Docker\n response_headers: {} # Additional response headers to send with responses\n Backend Configuration Fields: - command: Executable name/path for the backend - args: Default arguments prepended to all instances - environment: Environment variables for the backend process (optional) - response_headers: Additional response headers to send with responses (optional) - docker: Docker-specific configuration (optional) - enabled: Boolean flag to enable Docker runtime - image: Docker image to use - args: Additional arguments passed to docker run - environment: Environment variables for the container (optional)
If llamactl is behind an NGINX proxy, X-Accel-Buffering: no response header may be required for NGINX to properly stream the responses without buffering.
Environment Variables:
LlamaCpp Backend: - LLAMACTL_LLAMACPP_COMMAND - LlamaCpp executable command - LLAMACTL_LLAMACPP_ARGS - Space-separated default arguments - LLAMACTL_LLAMACPP_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_LLAMACPP_DOCKER_IMAGE - Docker image to use - LLAMACTL_LLAMACPP_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_LLAMACPP_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
VLLM Backend: - LLAMACTL_VLLM_COMMAND - VLLM executable command - LLAMACTL_VLLM_ARGS - Space-separated default arguments - LLAMACTL_VLLM_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_VLLM_DOCKER_IMAGE - Docker image to use - LLAMACTL_VLLM_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_VLLM_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
MLX Backend: - LLAMACTL_MLX_COMMAND - MLX executable command - LLAMACTL_MLX_ARGS - Space-separated default arguments - LLAMACTL_MLX_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_MLX_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
instances:\n port_range: [8000, 9000] # Port range for instances (default: [8000, 9000])\n data_dir: \"~/.local/share/llamactl\" # Directory for all llamactl data (default varies by OS)\n configs_dir: \"~/.local/share/llamactl/instances\" # Directory for instance configs (default: data_dir/instances)\n logs_dir: \"~/.local/share/llamactl/logs\" # Directory for instance logs (default: data_dir/logs)\n auto_create_dirs: true # Automatically create data/config/logs directories (default: true)\n max_instances: -1 # Maximum instances (-1 = unlimited)\n max_running_instances: -1 # Maximum running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Default auto-restart setting\n default_max_restarts: 3 # Default maximum restart attempts\n default_restart_delay: 5 # Default restart delay in seconds\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Default instance timeout check interval in minutes\n Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes
auth:\n require_inference_auth: true # Require API key for OpenAI endpoints (default: true)\n inference_keys: [] # List of valid inference API keys\n require_management_auth: true # Require API key for management endpoints (default: true)\n management_keys: [] # List of valid management API keys\n Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
llamactl supports remote node deployments. Configure remote nodes to deploy instances on remote hosts and manage them centrally.
local_node: \"main\" # Name of the local node (default: \"main\")\nnodes: # Node configuration map\n main: # Local node (empty address means local)\n address: \"\" # Not used for local node\n api_key: \"\" # Not used for local node\n worker1: # Remote worker node\n address: \"http://192.168.1.10:8080\"\n api_key: \"worker1-api-key\" # Management API key for authentication\n Node Configuration Fields: - local_node: Specifies which node in the nodes map represents the local node - nodes: Map of node configurations - address: HTTP/HTTPS URL of the remote node (empty for local node) - api_key: Management API key for authenticating with the remote node
Environment Variables: - LLAMACTL_LOCAL_NODE - Name of the local node
This guide will walk you through installing Llamactl on your system.
"},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"llamactl supports multiple backends. Install at least one:
For llama.cpp backend (all platforms):
You need llama-server from llama.cpp installed:
# Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n Or build from source - see llama.cpp docs
For MLX backend (macOS only):
MLX provides optimized inference on Apple Silicon. Install MLX-LM:
# Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)
For vLLM backend:
vLLM provides high-throughput distributed serving for LLMs. Install vLLM:
# Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n"},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"Download the latest release from the GitHub releases page:
# Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n"},{"location":"getting-started/installation/#option-2-docker","title":"Option 2: Docker","text":"llamactl provides Dockerfiles for creating Docker images with backends pre-installed. The resulting images include the latest llamactl release with the respective backend.
Available Dockerfiles (CUDA): - llamactl with llama.cpp CUDA: docker/Dockerfile.llamacpp (based on ghcr.io/ggml-org/llama.cpp:server-cuda) - llamactl with vLLM CUDA: docker/Dockerfile.vllm (based on vllm/vllm-openai:latest) - llamactl built from source: docker/Dockerfile.source (multi-stage build with webui)
Note: These Dockerfiles are configured for CUDA. For other platforms (CPU, ROCm, Vulkan, etc.), adapt the base image. For llama.cpp, see available tags at llama.cpp Docker docs. For vLLM, check vLLM docs.
"},{"location":"getting-started/installation/#using-docker-compose","title":"Using Docker Compose","text":"# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Create directories for data and models\nmkdir -p data/llamacpp data/vllm models\n\n# Start llamactl with llama.cpp backend\ndocker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d\n\n# Or start llamactl with vLLM backend\ndocker-compose -f docker/docker-compose.yml up llamactl-vllm -d\n Access the dashboard at: - llamactl with llama.cpp: http://localhost:8080 - llamactl with vLLM: http://localhost:8081
"},{"location":"getting-started/installation/#using-docker-build-and-run","title":"Using Docker Build and Run","text":"llamactl with llama.cpp CUDA:
docker build -f docker/Dockerfile.llamacpp -t llamactl:llamacpp-cuda .\ndocker run -d \\\n --name llamactl-llamacpp \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/llama.cpp:/root/.cache/llama.cpp \\\n llamactl:llamacpp-cuda\n llamactl with vLLM CUDA:
docker build -f docker/Dockerfile.vllm -t llamactl:vllm-cuda .\ndocker run -d \\\n --name llamactl-vllm \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/huggingface:/root/.cache/huggingface \\\n llamactl:vllm-cuda\n llamactl built from source:
docker build -f docker/Dockerfile.source -t llamactl:source .\ndocker run -d \\\n --name llamactl \\\n -p 8080:8080 \\\n llamactl:source\n"},{"location":"getting-started/installation/#option-3-build-from-source","title":"Option 3: Build from Source","text":"Requirements: - Go 1.24 or later - Node.js 22 or later - Git
If you prefer to build from source:
# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n"},{"location":"getting-started/installation/#remote-node-installation","title":"Remote Node Installation","text":"For deployments with remote nodes: - Install llamactl on each node using any of the methods above - Configure API keys for authentication between nodes
"},{"location":"getting-started/installation/#verification","title":"Verification","text":"Verify your installation by checking the version:
llamactl --version\n"},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
For remote node deployments, see the Configuration Guide for node setup instructions.
"},{"location":"getting-started/quick-start/","title":"Quick Start","text":"This guide will help you get Llamactl up and running in just a few minutes.
"},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"Start the Llamactl server:
llamactl\n By default, Llamactl will start on http://localhost:8080.
Open your web browser and navigate to:
http://localhost:8080\n Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
You should see the Llamactl web interface.
"},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"Additional Options: Backend-specific parameters
Click \"Create Instance\"
Once created, you can:
Here are basic example configurations for each backend:
llama.cpp backend:
{\n \"name\": \"llama2-7b\",\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n \"threads\": 4,\n \"ctx_size\": 2048,\n \"gpu_layers\": 32\n }\n}\n MLX backend (macOS only):
{\n \"name\": \"mistral-mlx\",\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"max_tokens\": 2048\n }\n}\n vLLM backend:
{\n \"name\": \"dialogpt-vllm\",\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n }\n}\n"},{"location":"getting-started/quick-start/#docker-support","title":"Docker Support","text":"Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:
backends:\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n docker:\n enabled: true\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n"},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"You can also manage instances via the REST API:
# List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\"\n }\n }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n"},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
"},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
curl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello! Can you help me write a Python function?\"\n }\n ],\n \"max_tokens\": 150,\n \"temperature\": 0.7\n }'\n"},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"You can also use the official OpenAI Python client:
from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n base_url=\"http://localhost:8080/v1\",\n api_key=\"not-needed\" # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n model=\"my-model\", # Use the name of your instance\n messages=[\n {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n ],\n max_tokens=200,\n temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n"},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"Get a list of running instances (models) in OpenAI-compatible format:
curl http://localhost:8080/v1/models\n"},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"Complete reference for the Llamactl REST API.
"},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"All API endpoints are relative to the base URL:
http://localhost:8080/api/v1\n"},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:
curl -H \"Authorization: Bearer <your-api-key>\" \\\n http://localhost:8080/api/v1/instances\n The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints
"},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"Get the version information of the llamactl server.
GET /api/v1/version\n Response:
Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n"},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"Get help text for the llama-server command.
GET /api/v1/server/help\n Response: Plain text help output from llama-server --help
Get version information of the llama-server binary.
GET /api/v1/server/version\n Response: Plain text version output from llama-server --version
List available devices for llama-server.
GET /api/v1/server/devices\n Response: Plain text device list from llama-server --list-devices
Get a list of all instances.
GET /api/v1/instances\n Response:
[\n {\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n }\n]\n"},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"Get detailed information about a specific instance.
GET /api/v1/instances/{name}\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"Create and start a new instance.
POST /api/v1/instances/{name}\n Request Body: JSON object with instance configuration. Common fields include:
backend_type: Backend type (llama_cpp, mlx_lm, or vllm)backend_options: Backend-specific configurationauto_restart: Enable automatic restart on failuremax_restarts: Maximum restart attemptsrestart_delay: Delay between restarts in secondson_demand_start: Start instance when receiving requestsidle_timeout: Idle timeout in minutesenvironment: Environment variables as key-value pairsnodes: Array with single node name to deploy the instance to (for remote deployments)See Managing Instances for complete configuration options.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"Update an existing instance configuration. See Managing Instances for available configuration options.
PUT /api/v1/instances/{name}\n Request Body: JSON object with configuration fields to update.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"Stop and remove an instance.
DELETE /api/v1/instances/{name}\n Response: 204 No Content
Start a stopped instance.
POST /api/v1/instances/{name}/start\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance
Stop a running instance.
POST /api/v1/instances/{name}/stop\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"stopped\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"Restart an instance (stop then start).
POST /api/v1/instances/{name}/restart\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"Retrieve instance logs.
GET /api/v1/instances/{name}/logs\n Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)
Response: Plain text log output
Example:
curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n"},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"Proxy HTTP requests directly to the llama-server instance.
GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.
Example - Check Instance Health:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/proxy/health\n This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.
Error Responses: - 503 Service Unavailable: Instance is not running
Llamactl provides OpenAI-compatible endpoints for inference operations.
"},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"List all instances in OpenAI-compatible format.
GET /v1/models\n Response:
{\n \"object\": \"list\",\n \"data\": [\n {\n \"id\": \"llama2-7b\",\n \"object\": \"model\",\n \"created\": 1705312200,\n \"owned_by\": \"llamactl\"\n }\n ]\n}\n"},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"All OpenAI-compatible inference endpoints are available:
POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n Request Body: Standard OpenAI format with model field specifying the instance name
Example:
{\n \"model\": \"llama2-7b\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello, how are you?\"\n }\n ]\n}\n The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.
Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit
Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed
All endpoints may return error responses in the following format:
{\n \"error\": \"Error message description\"\n}\n"},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"200: Success201: Created204: No Content (successful deletion)400: Bad Request (invalid parameters or request body)401: Unauthorized (missing or invalid API key)403: Forbidden (insufficient permissions)404: Not Found (instance not found)409: Conflict (instance already exists, max instances reached)500: Internal Server Error503: Service Unavailable (instance not running)# Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0\",\n \"OMP_NUM_THREADS\": \"8\"\n }\n }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello!\"}\n ],\n \"max_tokens\": 100\n }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n"},{"location":"user-guide/api-reference/#remote-node-instance-example","title":"Remote Node Instance Example","text":"# Create instance on specific remote node\ncurl -X POST http://localhost:8080/api/v1/instances/remote-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"nodes\": [\"worker1\"]\n }'\n\n# Check status of remote instance\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/remote-model\n\n# Use remote instance with OpenAI-compatible API\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"remote-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello from remote node!\"}\n ]\n }'\n"},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"You can also directly proxy requests to the llama-server instance:
# Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"prompt\": \"Hello, world!\",\n \"n_predict\": 50\n }'\n"},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
"},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"Parse a llama-server command string into instance options.
POST /api/v1/backends/llama-cpp/parse-command\n Request Body:
{\n \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n Response:
{\n \"backend_type\": \"llama_cpp\",\n \"llama_server_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"ctx_size\": 2048,\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"Parse an MLX-LM server command string into instance options.
POST /api/v1/backends/mlx/parse-command\n Request Body:
{\n \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"mlx_lm\",\n \"mlx_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"Parse a vLLM serve command string into instance options.
POST /api/v1/backends/vllm/parse-command\n Request Body:
{\n \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"vllm\",\n \"vllm_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error
The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:
go install github.com/swaggo/swag/cmd/swag@latestswag init -g cmd/server/main.go -o apidocsIf swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
http://localhost:8080/swagger/\n This provides a complete interactive interface for testing all API endpoints.
"},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.
"},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"Llamactl provides two ways to manage instances:
http://localhost:8080 with an intuitive dashboardIf authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session
"},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"Each instance is displayed as a card showing:
mlx-community/Mistral-7B-Instruct-v0.3-4bit)microsoft/DialoGPT-medium)# Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"threads\": 8,\n \"ctx_size\": 4096,\n \"gpu_layers\": 32\n }\n }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"top_p\": 0.9,\n \"max_tokens\": 2048\n },\n \"auto_restart\": true,\n \"max_restarts\": 3\n }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n },\n \"auto_restart\": true,\n \"on_demand_start\": true,\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0,1\",\n \"NCCL_DEBUG\": \"INFO\",\n \"PYTHONPATH\": \"/custom/path\"\n }\n }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n \"gpu_layers\": 32\n }\n }'\n\n# Create instance on specific remote node\ncurl -X POST http://localhost:8080/api/instances/remote-llama \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"nodes\": [\"worker1\"]\n }'\n"},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/start\n"},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/stop\n"},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"Modify instance settings:
curl -X PUT http://localhost:8080/api/instances/{name} \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_options\": {\n \"threads\": 8,\n \"context_size\": 4096\n }\n }'\n Note
Configuration changes require restarting the instance to take effect.
"},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"Check instance status in real-time:
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n"},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"curl -X DELETE http://localhost:8080/api/instances/{name}\n"},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs
"},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"Check the health status of your instances:
curl http://localhost:8080/api/instances/{name}/proxy/health\n"},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"Issues specific to Llamactl deployment and operation.
"},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"Problem: Invalid configuration preventing startup
Solutions: 1. Use minimal configuration:
server:\n host: \"0.0.0.0\"\n port: 8080\ninstances:\n port_range: [8000, 9000]\n # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\nProblem: Instance fails to start with model loading errors
Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files
Problem: Out of memory errors or system becomes unresponsive
Solutions: 1. Reduce context size:
{\n \"n_ctx\": 1024\n}\n Problem: GPU not being used effectively
Solutions: 1. Configure GPU layers:
{\n \"n_gpu_layers\": 35\n}\n"},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"Problem: Complex model loading, performance, or compatibility issues
Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:
Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions
Testing directly with llama-server:
# Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.
"},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"Problem: Web UI shows CORS errors in browser console
Solutions: 1. Configure allowed origins:
server:\n allowed_origins:\n - \"http://localhost:3000\"\n - \"https://yourdomain.com\"\n"},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"Problem: API requests failing with authentication errors
Solutions: 1. Disable authentication temporarily:
auth:\n require_management_auth: false\n require_inference_auth: false\n Configure API keys:
auth:\n management_keys:\n - \"your-management-key\"\n inference_keys:\n - \"your-inference-key\"\n Use correct Authorization header:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances\n Problem: Remote instances not appearing or cannot be managed
Solutions: 1. Verify node configuration:
local_node: \"main\" # Must match a key in nodes map\nnodes:\n main:\n address: \"\" # Empty for local node\n worker1:\n address: \"http://worker1.internal:8080\"\n api_key: \"secure-key\" # Must match worker1's management key\n curl -H \"Authorization: Bearer remote-node-key\" \\\n http://remote-node:8080/api/v1/instances\n# Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n"},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"export LLAMACTL_LOG_LEVEL=debug\nllamactl\n"},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"When reporting issues, include:
System information:
llamactl --version\n Configuration file (remove sensitive keys)
Relevant log output
Steps to reproduce the issue
on_demand_start: Start instance when receiving requestsidle_timeout: Idle timeout in minutesenvironment: Environment variables as key-value pairsnodes: Array with single node name to deploy the instance to (for remote deployments)See Managing Instances for complete configuration options.
Response: @@ -1655,74 +1674,103 @@ curl -X DELETE -H "Authorization: Bearer your-api-key" \ http://localhost:8080/api/v1/instances/my-model -
You can also directly proxy requests to the llama-server instance:
-# Direct proxy to instance (bypasses OpenAI compatibility layer)
-curl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \
+Remote Node Instance Example¶
+# Create instance on specific remote node
+curl -X POST http://localhost:8080/api/v1/instances/remote-model \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-api-key" \
-d '{
- "prompt": "Hello, world!",
- "n_predict": 50
- }'
+ "backend_type": "llama_cpp",
+ "backend_options": {
+ "model": "/models/llama-2-7b.gguf",
+ "gpu_layers": 32
+ },
+ "nodes": ["worker1"]
+ }'
+
+# Check status of remote instance
+curl -H "Authorization: Bearer your-api-key" \
+ http://localhost:8080/api/v1/instances/remote-model
+
+# Use remote instance with OpenAI-compatible API
+curl -X POST http://localhost:8080/v1/chat/completions \
+ -H "Content-Type: application/json" \
+ -H "Authorization: Bearer your-inference-api-key" \
+ -d '{
+ "model": "remote-model",
+ "messages": [
+ {"role": "user", "content": "Hello from remote node!"}
+ ]
+ }'
+
+Using the Proxy Endpoint¶
+You can also directly proxy requests to the llama-server instance:
+# Direct proxy to instance (bypasses OpenAI compatibility layer)
+curl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \
+ -H "Content-Type: application/json" \
+ -H "Authorization: Bearer your-api-key" \
+ -d '{
+ "prompt": "Hello, world!",
+ "n_predict": 50
+ }'
Backend-Specific Endpoints¶
Parse Commands¶
Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
Parse Llama.cpp Command¶
Parse a llama-server command string into instance options.
-POST /api/v1/backends/llama-cpp/parse-command
+
Request Body:
-
{
- "command": "llama-server -m /path/to/model.gguf -c 2048 --port 8080"
-}
+
Response:
-
{
- "backend_type": "llama_cpp",
- "llama_server_options": {
- "model": "/path/to/model.gguf",
- "ctx_size": 2048,
- "port": 8080
- }
-}
+{
+ "backend_type": "llama_cpp",
+ "llama_server_options": {
+ "model": "/path/to/model.gguf",
+ "ctx_size": 2048,
+ "port": 8080
+ }
+}
Parse MLX-LM Command¶
Parse an MLX-LM server command string into instance options.
-POST /api/v1/backends/mlx/parse-command
+
Request Body:
-
{
- "command": "mlx_lm.server --model /path/to/model --port 8080"
-}
+
Response:
-
{
- "backend_type": "mlx_lm",
- "mlx_server_options": {
- "model": "/path/to/model",
- "port": 8080
- }
-}
+{
+ "backend_type": "mlx_lm",
+ "mlx_server_options": {
+ "model": "/path/to/model",
+ "port": 8080
+ }
+}
Parse vLLM Command¶
Parse a vLLM serve command string into instance options.
-POST /api/v1/backends/vllm/parse-command
+
Request Body:
-
{
- "command": "vllm serve /path/to/model --port 8080"
-}
+
Response:
-
{
- "backend_type": "vllm",
- "vllm_server_options": {
- "model": "/path/to/model",
- "port": 8080
- }
-}
+{
+ "backend_type": "vllm",
+ "vllm_server_options": {
+ "model": "/path/to/model",
+ "port": 8080
+ }
+}
Error Responses for Parse Commands:
- 400 Bad Request: Invalid request body, empty command, or parse error
@@ -1735,7 +1783,7 @@
Swagger Documentation¶
If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
-http://localhost:8080/swagger/
+
This provides a complete interactive interface for testing all API endpoints.
@@ -1758,7 +1806,7 @@
- September 28, 2025
+ October 9, 2025
diff --git a/dev/user-guide/managing-instances/index.html b/dev/user-guide/managing-instances/index.html
index 8a3edc2..ca1999b 100644
--- a/dev/user-guide/managing-instances/index.html
+++ b/dev/user-guide/managing-instances/index.html
@@ -1259,6 +1259,7 @@
- Click the "Create Instance" button on the dashboard
- Enter a unique Name for your instance (only required field)
+- Select Target Node: Choose which node to deploy the instance to from the dropdown
- Choose Backend Type:
- llama.cpp: For GGUF models using llama-server
- MLX: For MLX-optimized models (macOS only)
@@ -1347,6 +1348,18 @@
"gpu_layers": 32
}
}'
+
+# Create instance on specific remote node
+curl -X POST http://localhost:8080/api/instances/remote-llama \
+ -H "Content-Type: application/json" \
+ -d '{
+ "backend_type": "llama_cpp",
+ "backend_options": {
+ "model": "/models/llama-7b.gguf",
+ "gpu_layers": 32
+ },
+ "nodes": ["worker1"]
+ }'
Start Instance¶
Via Web UI¶
@@ -1450,7 +1463,7 @@
- September 28, 2025
+ October 9, 2025
diff --git a/dev/user-guide/troubleshooting/index.html b/dev/user-guide/troubleshooting/index.html
index 1708031..0de9c30 100644
--- a/dev/user-guide/troubleshooting/index.html
+++ b/dev/user-guide/troubleshooting/index.html
@@ -695,6 +695,30 @@
+
+
+
+
+
+ Remote Node Issues
+
+
+
+
+
@@ -887,6 +911,30 @@
+
+
+
+
+
+ Remote Node Issues
+
+
+
+
+
@@ -1044,24 +1092,43 @@
+Remote Node Issues¶
+Node Configuration¶
+Problem: Remote instances not appearing or cannot be managed
+Solutions:
+1. Verify node configuration:
+
local_node: "main" # Must match a key in nodes map
+nodes:
+ main:
+ address: "" # Empty for local node
+ worker1:
+ address: "http://worker1.internal:8080"
+ api_key: "secure-key" # Must match worker1's management key
+
+
+- Test remote node connectivity:
+
+
Debugging and Logs¶
Viewing Instance Logs¶
-# Get instance logs via API
-curl http://localhost:8080/api/v1/instances/{name}/logs
-
-# Or check log files directly
-tail -f ~/.local/share/llamactl/logs/{instance-name}.log
+# Get instance logs via API
+curl http://localhost:8080/api/v1/instances/{name}/logs
+
+# Or check log files directly
+tail -f ~/.local/share/llamactl/logs/{instance-name}.log
Enable Debug Logging¶
-export LLAMACTL_LOG_LEVEL=debug
-llamactl
+
Getting Help¶
When reporting issues, include:
-
System information:
-