From c5faa0133f879f28fad403e7a6a2dc131b84f247 Mon Sep 17 00:00:00 2001 From: lordmathis Date: Mon, 22 Sep 2025 21:24:35 +0000 Subject: [PATCH] Deployed 84d994c to dev with MkDocs 1.5.3 and mike 2.0.0 --- dev/__pycache__/readme_sync.cpython-311.pyc | Bin 0 -> 3201 bytes dev/index.html | 121 ++++++++++++++++++-- dev/readme_sync.py | 62 ++++++++++ dev/search/search_index.json | 2 +- dev/sitemap.xml.gz | Bin 291 -> 291 bytes dev/user-guide/api-reference/index.html | 4 +- 6 files changed, 174 insertions(+), 15 deletions(-) create mode 100644 dev/__pycache__/readme_sync.cpython-311.pyc create mode 100644 dev/readme_sync.py diff --git a/dev/__pycache__/readme_sync.cpython-311.pyc b/dev/__pycache__/readme_sync.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..75a2f88d137016d3bb012b7b66cb0cf22ff16472 GIT binary patch literal 3201 zcma)8Z*1Gf6+cp>L`jtC*m3GWUBuRnW95&vbWP(p@xR6@oYr=RBugC6gTRQiE!!g1 zBON6w)e1u}ctL;!LxE&ni>k$tX2?GH<30^V@?{@IgM$qM0}KrL&~F;D0zp3Q9c77@ z69YSv@7}$8_wL=hEm#96Fm#S6)i(TQYl zRwmst=q56%tlR)W=tnZ=WZJhiHL3jYh2eYtTaeyICbdAMZdst}oJ=jcV=!%^i^yQ= za)cHdw#wV2UjHt-tf%2|CN0zZ8_kC>`(w`o-$Mx4<9g6gk=eyESNh9KD0^fnuP^_n;Ygz3*xIDw4Tk;IqKR ztvXNTQO&;bhG%nuuk&)q^f!A}bT6P35^v!^c$W^hML;9TsY z+iLPVb(^BmR<|qfk=snPW99C7i?1Y1@Vf6RnYI>h7GC)aG@=$vM3p%L*W9uY|I|( zi&GA#sA)|G^~u8iB*q$s2_@3@M)!+_$jsrH!#%x+hvJ0!k^HEI;}eo9%_&&|MY@8o zD;TE0;?k0om3q^;oG8I`6XR22M%4{Tg+&$)bajazDw45`6@5l^?ez=|%%~tXXQtzY zL-o!^5In~-s^?LG|Mb%_0KV~algVO{v_4FZT>908McoNtCATD{700J9 zUyDZ^uDBzN=|KSZ5~}(U$KSeX2lhXhUJD$m1P*NoZ>$JE z`B8hv7l-a2{ln3(@mKk8KL7IbN7pOwkJ*WHR_r4?_R&8+w%VrbwyDy`&%%*AC+`m4 z9(-`b3U}M#?kb|$&VO-{O3UDC6bQT)H)L}|6>i8iUS(KNi0rv{b9#?KCXbNS25f1LViYGtzO1DV_5lK&8u{}STKUdO$7@#6L3XW_lBdmeEe zJ@)9WO3N{LEw0z*dMjM7>*$J5f5702Dhum^`lk@u*ZIZON-VK@!0H&bJBCY>8;AQU z!Y3=AtqWaiLRWdj61r`ny8`dvC#5lnW^Kgq5551qaLK;#YpY|%?wEmbfsQI-*>luJ zG`=29tVI*6lofr~j=sAd?OTiXSRlc{-V(s&D9=DIBg53OJkei_R@L% z12_^-LTzV*=*gQM9}M`O9Onr?z?`K5PbnYpPZ^5vtjh;OXOH`ywzr=>>U-Kv5&kF( zG~Gxbz#K_B$ff<92PvdFs0@u)i%d0NYei}f6={d@&FCWDd|s zCzpaTuZVEdh}x{ENa=ZzK#Gg!ISlZJ#jQlt71z-0B^4^rq8MiZ?s7{R1Cunv@k=>C zOWE;b7XvZLH{y&FsACRGEa;8^X34du)BqBI*p-v4l0Xmc0S0&0$uEG>ZviQxO}_o^ z#O;X(?^t}y=3}Mg#=g$d`OQ{1$P62I$qKU(7Vh@n?*ILnJ7=oM7mRQ4(RKdqHU91L zd*7e_?)0|PsieWY`&-BzMEj`)a_IEQdan&9X?oL4n7Az zAUSsesT5#dDuvsjjY;b7qMPgWUl1lfyUTdVoyltQ@{%%$-v=2vPx?3z02hj?(lo^Y j902hnDpU%RX9KxaDOmOQP=FW>a+wNKfIY7gceeilXVChI literal 0 HcmV?d00001 diff --git a/dev/index.html b/dev/index.html index dd8ad2a..08f3ee7 100644 --- a/dev/index.html +++ b/dev/index.html @@ -389,6 +389,48 @@ + +
  • @@ -692,6 +734,48 @@ + +
  • @@ -740,20 +824,33 @@

    Llamactl Documentation

    -

    Welcome to the Llamactl documentation! Management server and proxy for multiple llama.cpp and MLX instances with OpenAI-compatible API routing.

    +

    Welcome to the Llamactl documentation!

    Dashboard Screenshot

    What is Llamactl?

    -

    Llamactl is designed to simplify the deployment and management of llama-server and MLX instances. It provides a modern solution for running multiple large language models with centralized management and multi-backend support.

    +

    Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.

    Features

    -

    🚀 Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality) -🔗 OpenAI API Compatible: Drop-in replacement - route requests by model name -🍎 Multi-Backend Support: Native support for both llama.cpp and MLX (Apple Silicon optimized) -🌐 Web Dashboard: Modern React UI for visual management (unlike CLI-only tools) -🔐 API Key Authentication: Separate keys for management vs inference access -📊 Instance Monitoring: Health checks, auto-restart, log management -⚡ Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits -💡 On-Demand Instance Start: Automatically launch instances upon receiving OpenAI-compatible API requests -💾 State Persistence: Ensure instances remain intact across server restarts

    +

    🚀 Easy Model Management

    +
      +
    • Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality)
    • +
    • On-Demand Instance Start: Automatically launch instances upon receiving API requests
    • +
    • State Persistence: Ensure instances remain intact across server restarts
    • +
    +

    🔗 Universal Compatibility

    +
      +
    • OpenAI API Compatible: Drop-in replacement - route requests by instance name
    • +
    • Multi-Backend Support: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
    • +
    +

    🌐 User-Friendly Interface

    +
      +
    • Web Dashboard: Modern React UI for visual management (unlike CLI-only tools)
    • +
    • API Key Authentication: Separate keys for management vs inference access
    • +
    +

    ⚡ Smart Operations

    +
      +
    • Instance Monitoring: Health checks, auto-restart, log management
    • +
    • Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits
    • +
    +

    Dashboard Screenshot

    • Installation Guide - Get Llamactl up and running
    • @@ -791,7 +888,7 @@ - September 18, 2025 + September 22, 2025 diff --git a/dev/readme_sync.py b/dev/readme_sync.py new file mode 100644 index 0000000..df2a3f2 --- /dev/null +++ b/dev/readme_sync.py @@ -0,0 +1,62 @@ +""" +MkDocs hook to sync content from README.md to docs/index.md +""" +import re +import os + + +def on_page_markdown(markdown, page, config, **kwargs): + """Process markdown content before rendering""" + # Only process the index.md file + if page.file.src_path != 'index.md': + return markdown + + # Get the path to README.md (relative to mkdocs.yml) + readme_path = os.path.join(os.path.dirname(config['config_file_path']), 'README.md') + + if not os.path.exists(readme_path): + print(f"Warning: README.md not found at {readme_path}") + return markdown + + try: + with open(readme_path, 'r', encoding='utf-8') as f: + readme_content = f.read() + except Exception as e: + print(f"Error reading README.md: {e}") + return markdown + + # Extract headline (the text in bold after the title) + headline_match = re.search(r'\*\*(.*?)\*\*', readme_content) + headline = headline_match.group(1) if headline_match else 'Management server for llama.cpp and MLX instances' + + # Extract features section - everything between ## Features and the next ## heading + features_match = re.search(r'## Features\n(.*?)(?=\n## |\Z)', readme_content, re.DOTALL) + if features_match: + features_content = features_match.group(1).strip() + # Just add line breaks at the end of each line for proper MkDocs rendering + features_with_breaks = add_line_breaks(features_content) + else: + features_with_breaks = "Features content not found in README.md" + + # Replace placeholders in the markdown + markdown = markdown.replace('{{HEADLINE}}', headline) + markdown = markdown.replace('{{FEATURES}}', features_with_breaks) + + # Fix image paths: convert docs/images/ to images/ for MkDocs + markdown = re.sub(r'docs/images/', 'images/', markdown) + + return markdown + + +def add_line_breaks(content): + """Add two spaces at the end of each line for proper MkDocs line breaks""" + lines = content.split('\n') + processed_lines = [] + + for line in lines: + if line.strip(): # Only add spaces to non-empty lines + processed_lines.append(line.rstrip() + ' ') + else: + processed_lines.append(line) + + return '\n'.join(processed_lines) \ No newline at end of file diff --git a/dev/search/search_index.json b/dev/search/search_index.json index 33d6a9b..3a6b55a 100644 --- a/dev/search/search_index.json +++ b/dev/search/search_index.json @@ -1 +1 @@ -{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Llamactl Documentation","text":"

      Welcome to the Llamactl documentation! Management server and proxy for multiple llama.cpp and MLX instances with OpenAI-compatible API routing.

      "},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"

      Llamactl is designed to simplify the deployment and management of llama-server and MLX instances. It provides a modern solution for running multiple large language models with centralized management and multi-backend support.

      "},{"location":"#features","title":"Features","text":"

      \ud83d\ude80 Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality) \ud83d\udd17 OpenAI API Compatible: Drop-in replacement - route requests by model name \ud83c\udf4e Multi-Backend Support: Native support for both llama.cpp and MLX (Apple Silicon optimized) \ud83c\udf10 Web Dashboard: Modern React UI for visual management (unlike CLI-only tools) \ud83d\udd10 API Key Authentication: Separate keys for management vs inference access \ud83d\udcca Instance Monitoring: Health checks, auto-restart, log management \u26a1 Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits \ud83d\udca1 On-Demand Instance Start: Automatically launch instances upon receiving OpenAI-compatible API requests \ud83d\udcbe State Persistence: Ensure instances remain intact across server restarts

      "},{"location":"#quick-links","title":"Quick Links","text":"
      • Installation Guide - Get Llamactl up and running
      • Configuration Guide - Detailed configuration options
      • Quick Start - Your first steps with Llamactl
      • Managing Instances - Instance lifecycle management
      • API Reference - Complete API documentation
      "},{"location":"#getting-help","title":"Getting Help","text":"

      If you need help or have questions:

      • Check the Troubleshooting guide
      • Visit the GitHub repository
      • Review the Configuration Guide for advanced settings
      "},{"location":"#license","title":"License","text":"

      MIT License - see the LICENSE file.

      "},{"location":"getting-started/configuration/","title":"Configuration","text":"

      llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:

      Defaults < Configuration file < Environment variables\n

      llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.

      "},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"

      Here's the default configuration with all available options:

      server:\n  host: \"0.0.0.0\"                # Server host to bind to\n  port: 8080                     # Server port to bind to\n  allowed_origins: [\"*\"]         # Allowed CORS origins (default: all)\n  enable_swagger: false          # Enable Swagger UI for API docs\n\nbackends:\n  llama_executable: llama-server # Path to llama-server executable\n  mlx_lm_executable: mlx_lm.server # Path to mlx_lm.server executable\n  vllm_executable: vllm # Path to vllm executable\n\ninstances:\n  port_range: [8000, 9000]       # Port range for instances\n  data_dir: ~/.local/share/llamactl         # Data directory (platform-specific, see below)\n  configs_dir: ~/.local/share/llamactl/instances  # Instance configs directory\n  logs_dir: ~/.local/share/llamactl/logs    # Logs directory\n  auto_create_dirs: true         # Auto-create data/config/logs dirs if missing\n  max_instances: -1              # Max instances (-1 = unlimited)\n  max_running_instances: -1      # Max running instances (-1 = unlimited)\n  enable_lru_eviction: true      # Enable LRU eviction for idle instances\n  default_auto_restart: true     # Auto-restart new instances by default\n  default_max_restarts: 3        # Max restarts for new instances\n  default_restart_delay: 5       # Restart delay (seconds) for new instances\n  default_on_demand_start: true  # Default on-demand start setting\n  on_demand_start_timeout: 120   # Default on-demand start timeout in seconds\n  timeout_check_interval: 5      # Idle instance timeout check in minutes\n\nauth:\n  require_inference_auth: true   # Require auth for inference endpoints\n  inference_keys: []             # Keys for inference endpoints\n  require_management_auth: true  # Require auth for management endpoints\n  management_keys: []            # Keys for management endpoints\n
      "},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"

      Configuration files are searched in the following locations (in order of precedence):

      Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml

      macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml

      Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml

      You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.

      "},{"location":"getting-started/configuration/#configuration-options","title":"Configuration Options","text":""},{"location":"getting-started/configuration/#server-configuration","title":"Server Configuration","text":"
      server:\n  host: \"0.0.0.0\"         # Server host to bind to (default: \"0.0.0.0\")\n  port: 8080              # Server port to bind to (default: 8080)\n  allowed_origins: [\"*\"]  # CORS allowed origins (default: [\"*\"])\n  enable_swagger: false   # Enable Swagger UI (default: false)\n

      Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)

      "},{"location":"getting-started/configuration/#backend-configuration","title":"Backend Configuration","text":"
      backends:\n  llama_executable: \"llama-server\"     # Path to llama-server executable (default: \"llama-server\")\n  mlx_lm_executable: \"mlx_lm.server\"   # Path to mlx_lm.server executable (default: \"mlx_lm.server\")\n  vllm_executable: \"vllm\"              # Path to vllm executable (default: \"vllm\")\n

      Environment Variables: - LLAMACTL_LLAMA_EXECUTABLE - Path to llama-server executable - LLAMACTL_MLX_LM_EXECUTABLE - Path to mlx_lm.server executable - LLAMACTL_VLLM_EXECUTABLE - Path to vllm executable

      "},{"location":"getting-started/configuration/#instance-configuration","title":"Instance Configuration","text":"
      instances:\n  port_range: [8000, 9000]                          # Port range for instances (default: [8000, 9000])\n  data_dir: \"~/.local/share/llamactl\"               # Directory for all llamactl data (default varies by OS)\n  configs_dir: \"~/.local/share/llamactl/instances\"  # Directory for instance configs (default: data_dir/instances)\n  logs_dir: \"~/.local/share/llamactl/logs\"          # Directory for instance logs (default: data_dir/logs)\n  auto_create_dirs: true                            # Automatically create data/config/logs directories (default: true)\n  max_instances: -1                                 # Maximum instances (-1 = unlimited)\n  max_running_instances: -1                         # Maximum running instances (-1 = unlimited)\n  enable_lru_eviction: true                         # Enable LRU eviction for idle instances\n  default_auto_restart: true                        # Default auto-restart setting\n  default_max_restarts: 3                           # Default maximum restart attempts\n  default_restart_delay: 5                          # Default restart delay in seconds\n  default_on_demand_start: true                     # Default on-demand start setting\n  on_demand_start_timeout: 120                      # Default on-demand start timeout in seconds\n  timeout_check_interval: 5                         # Default instance timeout check interval in minutes\n

      Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes

      "},{"location":"getting-started/configuration/#authentication-configuration","title":"Authentication Configuration","text":"
      auth:\n  require_inference_auth: true           # Require API key for OpenAI endpoints (default: true)\n  inference_keys: []                     # List of valid inference API keys\n  require_management_auth: true          # Require API key for management endpoints (default: true)\n  management_keys: []                    # List of valid management API keys\n

      Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys

      "},{"location":"getting-started/configuration/#command-line-options","title":"Command Line Options","text":"

      View all available command line options:

      llamactl --help\n

      You can also override configuration using command line flags when starting llamactl.

      "},{"location":"getting-started/installation/","title":"Installation","text":"

      This guide will walk you through installing Llamactl on your system.

      "},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"

      llamactl supports multiple backends. Install at least one:

      For llama.cpp backend (all platforms):

      You need llama-server from llama.cpp installed:

      # Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n

      Or build from source - see llama.cpp docs

      For MLX backend (macOS only):

      MLX provides optimized inference on Apple Silicon. Install MLX-LM:

      # Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n

      Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)

      For vLLM backend:

      vLLM provides high-throughput distributed serving for LLMs. Install vLLM:

      # Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n
      "},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"

      Download the latest release from the GitHub releases page:

      # Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n
      "},{"location":"getting-started/installation/#option-2-build-from-source","title":"Option 2: Build from Source","text":"

      Requirements: - Go 1.24 or later - Node.js 22 or later - Git

      If you prefer to build from source:

      # Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n
      "},{"location":"getting-started/installation/#verification","title":"Verification","text":"

      Verify your installation by checking the version:

      llamactl --version\n
      "},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"

      Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!

      "},{"location":"getting-started/quick-start/","title":"Quick Start","text":"

      This guide will help you get Llamactl up and running in just a few minutes.

      "},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"

      Start the Llamactl server:

      llamactl\n

      By default, Llamactl will start on http://localhost:8080.

      "},{"location":"getting-started/quick-start/#step-2-access-the-web-ui","title":"Step 2: Access the Web UI","text":"

      Open your web browser and navigate to:

      http://localhost:8080\n

      Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.

      You should see the Llamactl web interface.

      "},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"
      1. Click the \"Add Instance\" button
      2. Fill in the instance configuration:
      3. Name: Give your instance a descriptive name
      4. Backend Type: Choose from llama.cpp, MLX, or vLLM
      5. Model: Model path or identifier for your chosen backend
      6. Additional Options: Backend-specific parameters

      7. Click \"Create Instance\"

      "},{"location":"getting-started/quick-start/#step-4-start-your-instance","title":"Step 4: Start Your Instance","text":"

      Once created, you can:

      • Start the instance by clicking the start button
      • Monitor its status in real-time
      • View logs by clicking the logs button
      • Stop the instance when needed
      "},{"location":"getting-started/quick-start/#example-configurations","title":"Example Configurations","text":"

      Here are basic example configurations for each backend:

      llama.cpp backend:

      {\n  \"name\": \"llama2-7b\",\n  \"backend_type\": \"llama_cpp\",\n  \"backend_options\": {\n    \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n    \"threads\": 4,\n    \"ctx_size\": 2048,\n    \"gpu_layers\": 32\n  }\n}\n

      MLX backend (macOS only):

      {\n  \"name\": \"mistral-mlx\",\n  \"backend_type\": \"mlx_lm\",\n  \"backend_options\": {\n    \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n    \"temp\": 0.7,\n    \"max_tokens\": 2048\n  }\n}\n

      vLLM backend:

      {\n  \"name\": \"dialogpt-vllm\",\n  \"backend_type\": \"vllm\",\n  \"backend_options\": {\n    \"model\": \"microsoft/DialoGPT-medium\",\n    \"tensor_parallel_size\": 2,\n    \"gpu_memory_utilization\": 0.9\n  }\n}\n

      "},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"

      You can also manage instances via the REST API:

      # List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\"\n    }\n  }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n
      "},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"

      Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.

      "},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"

      Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:

      curl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\n        \"role\": \"user\",\n        \"content\": \"Hello! Can you help me write a Python function?\"\n      }\n    ],\n    \"max_tokens\": 150,\n    \"temperature\": 0.7\n  }'\n
      "},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"

      You can also use the official OpenAI Python client:

      from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n    base_url=\"http://localhost:8080/v1\",\n    api_key=\"not-needed\"  # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n    model=\"my-model\",  # Use the name of your instance\n    messages=[\n        {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n    ],\n    max_tokens=200,\n    temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n
      "},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"

      Get a list of running instances (models) in OpenAI-compatible format:

      curl http://localhost:8080/v1/models\n
      "},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"
      • Manage instances Managing Instances
      • Explore the API Reference
      • Configure advanced settings in the Configuration guide
      "},{"location":"user-guide/api-reference/","title":"API Reference","text":"

      Complete reference for the Llamactl REST API.

      "},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"

      All API endpoints are relative to the base URL:

      http://localhost:8080/api/v1\n
      "},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"

      Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:

      curl -H \"Authorization: Bearer <your-api-key>\" \\\n  http://localhost:8080/api/v1/instances\n

      The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints

      "},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"

      Get the version information of the llamactl server.

      GET /api/v1/version\n

      Response:

      Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n

      "},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"

      Get help text for the llama-server command.

      GET /api/v1/server/help\n

      Response: Plain text help output from llama-server --help

      "},{"location":"user-guide/api-reference/#get-llama-server-version","title":"Get Llama Server Version","text":"

      Get version information of the llama-server binary.

      GET /api/v1/server/version\n

      Response: Plain text version output from llama-server --version

      "},{"location":"user-guide/api-reference/#list-available-devices","title":"List Available Devices","text":"

      List available devices for llama-server.

      GET /api/v1/server/devices\n

      Response: Plain text device list from llama-server --list-devices

      "},{"location":"user-guide/api-reference/#instances","title":"Instances","text":""},{"location":"user-guide/api-reference/#list-all-instances","title":"List All Instances","text":"

      Get a list of all instances.

      GET /api/v1/instances\n

      Response:

      [\n  {\n    \"name\": \"llama2-7b\",\n    \"status\": \"running\",\n    \"created\": 1705312200\n  }\n]\n

      "},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"

      Get detailed information about a specific instance.

      GET /api/v1/instances/{name}\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"

      Create and start a new instance.

      POST /api/v1/instances/{name}\n

      Request Body: JSON object with instance configuration. See Managing Instances for available configuration options.

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"

      Update an existing instance configuration. See Managing Instances for available configuration options.

      PUT /api/v1/instances/{name}\n

      Request Body: JSON object with configuration fields to update.

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"

      Stop and remove an instance.

      DELETE /api/v1/instances/{name}\n

      Response: 204 No Content

      "},{"location":"user-guide/api-reference/#instance-operations","title":"Instance Operations","text":""},{"location":"user-guide/api-reference/#start-instance","title":"Start Instance","text":"

      Start a stopped instance.

      POST /api/v1/instances/{name}/start\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance

      "},{"location":"user-guide/api-reference/#stop-instance","title":"Stop Instance","text":"

      Stop a running instance.

      POST /api/v1/instances/{name}/stop\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"stopped\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"

      Restart an instance (stop then start).

      POST /api/v1/instances/{name}/restart\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"

      Retrieve instance logs.

      GET /api/v1/instances/{name}/logs\n

      Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)

      Response: Plain text log output

      Example:

      curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n

      "},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"

      Proxy HTTP requests directly to the llama-server instance.

      GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n

      This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.

      Example - Check Instance Health:

      curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/proxy/health\n

      This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.

      Error Responses: - 503 Service Unavailable: Instance is not running

      "},{"location":"user-guide/api-reference/#openai-compatible-api","title":"OpenAI-Compatible API","text":"

      Llamactl provides OpenAI-compatible endpoints for inference operations.

      "},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"

      List all instances in OpenAI-compatible format.

      GET /v1/models\n

      Response:

      {\n  \"object\": \"list\",\n  \"data\": [\n    {\n      \"id\": \"llama2-7b\",\n      \"object\": \"model\",\n      \"created\": 1705312200,\n      \"owned_by\": \"llamactl\"\n    }\n  ]\n}\n

      "},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"

      All OpenAI-compatible inference endpoints are available:

      POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n

      Request Body: Standard OpenAI format with model field specifying the instance name

      Example:

      {\n  \"model\": \"llama2-7b\",\n  \"messages\": [\n    {\n      \"role\": \"user\",\n      \"content\": \"Hello, how are you?\"\n    }\n  ]\n}\n

      The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.

      Error Responses: - 400 Bad Request: Invalid request body or missing model name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit

      "},{"location":"user-guide/api-reference/#instance-status-values","title":"Instance Status Values","text":"

      Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed

      "},{"location":"user-guide/api-reference/#error-responses","title":"Error Responses","text":"

      All endpoints may return error responses in the following format:

      {\n  \"error\": \"Error message description\"\n}\n
      "},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"
      • 200: Success
      • 201: Created
      • 204: No Content (successful deletion)
      • 400: Bad Request (invalid parameters or request body)
      • 401: Unauthorized (missing or invalid API key)
      • 403: Forbidden (insufficient permissions)
      • 404: Not Found (instance not found)
      • 409: Conflict (instance already exists, max instances reached)
      • 500: Internal Server Error
      • 503: Service Unavailable (instance not running)
      "},{"location":"user-guide/api-reference/#examples","title":"Examples","text":""},{"location":"user-guide/api-reference/#complete-instance-lifecycle","title":"Complete Instance Lifecycle","text":"
      # Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"model\": \"/models/llama-2-7b.gguf\"\n  }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-inference-api-key\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\"role\": \"user\", \"content\": \"Hello!\"}\n    ],\n    \"max_tokens\": 100\n  }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n
      "},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"

      You can also directly proxy requests to the llama-server instance:

      # Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"prompt\": \"Hello, world!\",\n    \"n_predict\": 50\n  }'\n
      "},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"

      Llamactl provides endpoints to parse command strings from different backends into instance configuration options.

      "},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"

      Parse a llama-server command string into instance options.

      POST /api/v1/backends/llama-cpp/parse-command\n

      Request Body:

      {\n  \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n

      Response:

      {\n  \"backend_type\": \"llama_cpp\",\n  \"llama_server_options\": {\n    \"model\": \"/path/to/model.gguf\",\n    \"ctx_size\": 2048,\n    \"port\": 8080\n  }\n}\n

      "},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"

      Parse an MLX-LM server command string into instance options.

      POST /api/v1/backends/mlx/parse-command\n

      Request Body:

      {\n  \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n

      Response:

      {\n  \"backend_type\": \"mlx_lm\",\n  \"mlx_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

      "},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"

      Parse a vLLM serve command string into instance options.

      POST /api/v1/backends/vllm/parse-command\n

      Request Body:

      {\n  \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n

      Response:

      {\n  \"backend_type\": \"vllm\",\n  \"vllm_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

      Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error

      "},{"location":"user-guide/api-reference/#auto-generated-documentation","title":"Auto-Generated Documentation","text":"

      The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:

      1. Install the swag tool: go install github.com/swaggo/swag/cmd/swag@latest
      2. Generate docs: swag init -g cmd/server/main.go -o apidocs
      "},{"location":"user-guide/api-reference/#swagger-documentation","title":"Swagger Documentation","text":"

      If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:

      http://localhost:8080/swagger/\n

      This provides a complete interactive interface for testing all API endpoints.

      "},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"

      Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.

      "},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"

      Llamactl provides two ways to manage instances:

      • Web UI: Accessible at http://localhost:8080 with an intuitive dashboard
      • REST API: Programmatic access for automation and integration

      "},{"location":"user-guide/managing-instances/#authentication","title":"Authentication","text":"

      If authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session

      "},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"
      • Switch between light and dark themes
      • Setting is remembered across sessions
      "},{"location":"user-guide/managing-instances/#instance-cards","title":"Instance Cards","text":"

      Each instance is displayed as a card showing:

      • Instance name
      • Health status badge (unknown, ready, error, failed)
      • Action buttons (start, stop, edit, logs, delete)
      "},{"location":"user-guide/managing-instances/#create-instance","title":"Create Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui","title":"Via Web UI","text":"
      1. Click the \"Create Instance\" button on the dashboard
      2. Enter a unique Name for your instance (only required field)
      3. Choose Backend Type:
        • llama.cpp: For GGUF models using llama-server
        • MLX: For MLX-optimized models (macOS only)
        • vLLM: For distributed serving and high-throughput inference
      4. Configure model source:
        • For llama.cpp: GGUF model path or HuggingFace repo
        • For MLX: MLX model path or identifier (e.g., mlx-community/Mistral-7B-Instruct-v0.3-4bit)
        • For vLLM: HuggingFace model identifier (e.g., microsoft/DialoGPT-medium)
      5. Configure optional instance management settings:
        • Auto Restart: Automatically restart instance on failure
        • Max Restarts: Maximum number of restart attempts
        • Restart Delay: Delay in seconds between restart attempts
        • On Demand Start: Start instance when receiving a request to the OpenAI compatible endpoint
        • Idle Timeout: Minutes before stopping idle instance (set to 0 to disable)
      6. Configure backend-specific options:
        • llama.cpp: Threads, context size, GPU layers, port, etc.
        • MLX: Temperature, top-p, adapter path, Python environment, etc.
        • vLLM: Tensor parallel size, GPU memory utilization, quantization, etc.
      7. Click \"Create\" to save the instance
      "},{"location":"user-guide/managing-instances/#via-api","title":"Via API","text":"
      # Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\",\n      \"threads\": 8,\n      \"ctx_size\": 4096,\n      \"gpu_layers\": 32\n    }\n  }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"mlx_lm\",\n    \"backend_options\": {\n      \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n      \"temp\": 0.7,\n      \"top_p\": 0.9,\n      \"max_tokens\": 2048\n    },\n    \"auto_restart\": true,\n    \"max_restarts\": 3\n  }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"vllm\",\n    \"backend_options\": {\n      \"model\": \"microsoft/DialoGPT-medium\",\n      \"tensor_parallel_size\": 2,\n      \"gpu_memory_utilization\": 0.9\n    },\n    \"auto_restart\": true,\n    \"on_demand_start\": true\n  }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n      \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n      \"gpu_layers\": 32\n    }\n  }'\n
      "},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"
      1. Click the \"Start\" button on an instance card
      2. Watch the status change to \"Unknown\"
      3. Monitor progress in the logs
      4. Instance status changes to \"Ready\" when ready
      "},{"location":"user-guide/managing-instances/#via-api_1","title":"Via API","text":"
      curl -X POST http://localhost:8080/api/instances/{name}/start\n
      "},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"
      1. Click the \"Stop\" button on an instance card
      2. Instance gracefully shuts down
      "},{"location":"user-guide/managing-instances/#via-api_2","title":"Via API","text":"
      curl -X POST http://localhost:8080/api/instances/{name}/stop\n
      "},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"
      1. Click the \"Edit\" button on an instance card
      2. Modify settings in the configuration dialog
      3. Changes require instance restart to take effect
      4. Click \"Update & Restart\" to apply changes
      "},{"location":"user-guide/managing-instances/#via-api_3","title":"Via API","text":"

      Modify instance settings:

      curl -X PUT http://localhost:8080/api/instances/{name} \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_options\": {\n      \"threads\": 8,\n      \"context_size\": 4096\n    }\n  }'\n

      Note

      Configuration changes require restarting the instance to take effect.

      "},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"
      1. Click the \"Logs\" button on any instance card
      2. Real-time log viewer opens
      "},{"location":"user-guide/managing-instances/#via-api_4","title":"Via API","text":"

      Check instance status in real-time:

      # Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n
      "},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"
      1. Click the \"Delete\" button on an instance card
      2. Only stopped instances can be deleted
      3. Confirm deletion in the dialog
      "},{"location":"user-guide/managing-instances/#via-api_5","title":"Via API","text":"
      curl -X DELETE http://localhost:8080/api/instances/{name}\n
      "},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"

      Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).

      # Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n

      All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs

      "},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"
      1. The health status badge is displayed on each instance card
      "},{"location":"user-guide/managing-instances/#via-api_6","title":"Via API","text":"

      Check the health status of your instances:

      curl http://localhost:8080/api/instances/{name}/proxy/health\n
      "},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"

      Issues specific to Llamactl deployment and operation.

      "},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"

      Problem: Invalid configuration preventing startup

      Solutions: 1. Use minimal configuration:

      server:\n  host: \"0.0.0.0\"\n  port: 8080\ninstances:\n  port_range: [8000, 9000]\n

      1. Check data directory permissions:
        # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\n
      "},{"location":"user-guide/troubleshooting/#instance-management-issues","title":"Instance Management Issues","text":""},{"location":"user-guide/troubleshooting/#model-loading-failures","title":"Model Loading Failures","text":"

      Problem: Instance fails to start with model loading errors

      Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files

      "},{"location":"user-guide/troubleshooting/#memory-issues","title":"Memory Issues","text":"

      Problem: Out of memory errors or system becomes unresponsive

      Solutions: 1. Reduce context size:

      {\n  \"n_ctx\": 1024\n}\n

      1. Use quantized models:
      2. Try Q4_K_M instead of higher precision models
      3. Use smaller model variants (7B instead of 13B)
      "},{"location":"user-guide/troubleshooting/#gpu-configuration","title":"GPU Configuration","text":"

      Problem: GPU not being used effectively

      Solutions: 1. Configure GPU layers:

      {\n  \"n_gpu_layers\": 35\n}\n

      "},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"

      Problem: Complex model loading, performance, or compatibility issues

      Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:

      Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions

      Testing directly with llama-server:

      # Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n

      This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.

      "},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"

      Problem: Web UI shows CORS errors in browser console

      Solutions: 1. Configure allowed origins:

      server:\n  allowed_origins:\n    - \"http://localhost:3000\"\n    - \"https://yourdomain.com\"\n

      "},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"

      Problem: API requests failing with authentication errors

      Solutions: 1. Disable authentication temporarily:

      auth:\n  require_management_auth: false\n  require_inference_auth: false\n

      1. Configure API keys:

        auth:\n  management_keys:\n    - \"your-management-key\"\n  inference_keys:\n    - \"your-inference-key\"\n

      2. Use correct Authorization header:

        curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances\n

      "},{"location":"user-guide/troubleshooting/#debugging-and-logs","title":"Debugging and Logs","text":""},{"location":"user-guide/troubleshooting/#viewing-instance-logs","title":"Viewing Instance Logs","text":"
      # Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n
      "},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"
      export LLAMACTL_LOG_LEVEL=debug\nllamactl\n
      "},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"

      When reporting issues, include:

      1. System information:

        llamactl --version\n

      2. Configuration file (remove sensitive keys)

      3. Relevant log output

      4. Steps to reproduce the issue

      "}]} \ No newline at end of file +{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Llamactl Documentation","text":"

      Welcome to the Llamactl documentation!

      "},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"

      Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.

      "},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"
      • Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality)
      • On-Demand Instance Start: Automatically launch instances upon receiving API requests
      • State Persistence: Ensure instances remain intact across server restarts
      "},{"location":"#universal-compatibility","title":"\ud83d\udd17 Universal Compatibility","text":"
      • OpenAI API Compatible: Drop-in replacement - route requests by instance name
      • Multi-Backend Support: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
      "},{"location":"#user-friendly-interface","title":"\ud83c\udf10 User-Friendly Interface","text":"
      • Web Dashboard: Modern React UI for visual management (unlike CLI-only tools)
      • API Key Authentication: Separate keys for management vs inference access
      "},{"location":"#smart-operations","title":"\u26a1 Smart Operations","text":"
      • Instance Monitoring: Health checks, auto-restart, log management
      • Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits
      "},{"location":"#quick-links","title":"Quick Links","text":"
      • Installation Guide - Get Llamactl up and running
      • Configuration Guide - Detailed configuration options
      • Quick Start - Your first steps with Llamactl
      • Managing Instances - Instance lifecycle management
      • API Reference - Complete API documentation
      "},{"location":"#getting-help","title":"Getting Help","text":"

      If you need help or have questions:

      • Check the Troubleshooting guide
      • Visit the GitHub repository
      • Review the Configuration Guide for advanced settings
      "},{"location":"#license","title":"License","text":"

      MIT License - see the LICENSE file.

      "},{"location":"getting-started/configuration/","title":"Configuration","text":"

      llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:

      Defaults < Configuration file < Environment variables\n

      llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.

      "},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"

      Here's the default configuration with all available options:

      server:\n  host: \"0.0.0.0\"                # Server host to bind to\n  port: 8080                     # Server port to bind to\n  allowed_origins: [\"*\"]         # Allowed CORS origins (default: all)\n  enable_swagger: false          # Enable Swagger UI for API docs\n\nbackends:\n  llama_executable: llama-server # Path to llama-server executable\n  mlx_lm_executable: mlx_lm.server # Path to mlx_lm.server executable\n  vllm_executable: vllm # Path to vllm executable\n\ninstances:\n  port_range: [8000, 9000]       # Port range for instances\n  data_dir: ~/.local/share/llamactl         # Data directory (platform-specific, see below)\n  configs_dir: ~/.local/share/llamactl/instances  # Instance configs directory\n  logs_dir: ~/.local/share/llamactl/logs    # Logs directory\n  auto_create_dirs: true         # Auto-create data/config/logs dirs if missing\n  max_instances: -1              # Max instances (-1 = unlimited)\n  max_running_instances: -1      # Max running instances (-1 = unlimited)\n  enable_lru_eviction: true      # Enable LRU eviction for idle instances\n  default_auto_restart: true     # Auto-restart new instances by default\n  default_max_restarts: 3        # Max restarts for new instances\n  default_restart_delay: 5       # Restart delay (seconds) for new instances\n  default_on_demand_start: true  # Default on-demand start setting\n  on_demand_start_timeout: 120   # Default on-demand start timeout in seconds\n  timeout_check_interval: 5      # Idle instance timeout check in minutes\n\nauth:\n  require_inference_auth: true   # Require auth for inference endpoints\n  inference_keys: []             # Keys for inference endpoints\n  require_management_auth: true  # Require auth for management endpoints\n  management_keys: []            # Keys for management endpoints\n
      "},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"

      Configuration files are searched in the following locations (in order of precedence):

      Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml

      macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml

      Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml

      You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.

      "},{"location":"getting-started/configuration/#configuration-options","title":"Configuration Options","text":""},{"location":"getting-started/configuration/#server-configuration","title":"Server Configuration","text":"
      server:\n  host: \"0.0.0.0\"         # Server host to bind to (default: \"0.0.0.0\")\n  port: 8080              # Server port to bind to (default: 8080)\n  allowed_origins: [\"*\"]  # CORS allowed origins (default: [\"*\"])\n  enable_swagger: false   # Enable Swagger UI (default: false)\n

      Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)

      "},{"location":"getting-started/configuration/#backend-configuration","title":"Backend Configuration","text":"
      backends:\n  llama_executable: \"llama-server\"     # Path to llama-server executable (default: \"llama-server\")\n  mlx_lm_executable: \"mlx_lm.server\"   # Path to mlx_lm.server executable (default: \"mlx_lm.server\")\n  vllm_executable: \"vllm\"              # Path to vllm executable (default: \"vllm\")\n

      Environment Variables: - LLAMACTL_LLAMA_EXECUTABLE - Path to llama-server executable - LLAMACTL_MLX_LM_EXECUTABLE - Path to mlx_lm.server executable - LLAMACTL_VLLM_EXECUTABLE - Path to vllm executable

      "},{"location":"getting-started/configuration/#instance-configuration","title":"Instance Configuration","text":"
      instances:\n  port_range: [8000, 9000]                          # Port range for instances (default: [8000, 9000])\n  data_dir: \"~/.local/share/llamactl\"               # Directory for all llamactl data (default varies by OS)\n  configs_dir: \"~/.local/share/llamactl/instances\"  # Directory for instance configs (default: data_dir/instances)\n  logs_dir: \"~/.local/share/llamactl/logs\"          # Directory for instance logs (default: data_dir/logs)\n  auto_create_dirs: true                            # Automatically create data/config/logs directories (default: true)\n  max_instances: -1                                 # Maximum instances (-1 = unlimited)\n  max_running_instances: -1                         # Maximum running instances (-1 = unlimited)\n  enable_lru_eviction: true                         # Enable LRU eviction for idle instances\n  default_auto_restart: true                        # Default auto-restart setting\n  default_max_restarts: 3                           # Default maximum restart attempts\n  default_restart_delay: 5                          # Default restart delay in seconds\n  default_on_demand_start: true                     # Default on-demand start setting\n  on_demand_start_timeout: 120                      # Default on-demand start timeout in seconds\n  timeout_check_interval: 5                         # Default instance timeout check interval in minutes\n

      Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes

      "},{"location":"getting-started/configuration/#authentication-configuration","title":"Authentication Configuration","text":"
      auth:\n  require_inference_auth: true           # Require API key for OpenAI endpoints (default: true)\n  inference_keys: []                     # List of valid inference API keys\n  require_management_auth: true          # Require API key for management endpoints (default: true)\n  management_keys: []                    # List of valid management API keys\n

      Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys

      "},{"location":"getting-started/configuration/#command-line-options","title":"Command Line Options","text":"

      View all available command line options:

      llamactl --help\n

      You can also override configuration using command line flags when starting llamactl.

      "},{"location":"getting-started/installation/","title":"Installation","text":"

      This guide will walk you through installing Llamactl on your system.

      "},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"

      llamactl supports multiple backends. Install at least one:

      For llama.cpp backend (all platforms):

      You need llama-server from llama.cpp installed:

      # Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n

      Or build from source - see llama.cpp docs

      For MLX backend (macOS only):

      MLX provides optimized inference on Apple Silicon. Install MLX-LM:

      # Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n

      Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)

      For vLLM backend:

      vLLM provides high-throughput distributed serving for LLMs. Install vLLM:

      # Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n
      "},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"

      Download the latest release from the GitHub releases page:

      # Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n
      "},{"location":"getting-started/installation/#option-2-build-from-source","title":"Option 2: Build from Source","text":"

      Requirements: - Go 1.24 or later - Node.js 22 or later - Git

      If you prefer to build from source:

      # Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n
      "},{"location":"getting-started/installation/#verification","title":"Verification","text":"

      Verify your installation by checking the version:

      llamactl --version\n
      "},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"

      Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!

      "},{"location":"getting-started/quick-start/","title":"Quick Start","text":"

      This guide will help you get Llamactl up and running in just a few minutes.

      "},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"

      Start the Llamactl server:

      llamactl\n

      By default, Llamactl will start on http://localhost:8080.

      "},{"location":"getting-started/quick-start/#step-2-access-the-web-ui","title":"Step 2: Access the Web UI","text":"

      Open your web browser and navigate to:

      http://localhost:8080\n

      Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.

      You should see the Llamactl web interface.

      "},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"
      1. Click the \"Add Instance\" button
      2. Fill in the instance configuration:
      3. Name: Give your instance a descriptive name
      4. Backend Type: Choose from llama.cpp, MLX, or vLLM
      5. Model: Model path or identifier for your chosen backend
      6. Additional Options: Backend-specific parameters

      7. Click \"Create Instance\"

      "},{"location":"getting-started/quick-start/#step-4-start-your-instance","title":"Step 4: Start Your Instance","text":"

      Once created, you can:

      • Start the instance by clicking the start button
      • Monitor its status in real-time
      • View logs by clicking the logs button
      • Stop the instance when needed
      "},{"location":"getting-started/quick-start/#example-configurations","title":"Example Configurations","text":"

      Here are basic example configurations for each backend:

      llama.cpp backend:

      {\n  \"name\": \"llama2-7b\",\n  \"backend_type\": \"llama_cpp\",\n  \"backend_options\": {\n    \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n    \"threads\": 4,\n    \"ctx_size\": 2048,\n    \"gpu_layers\": 32\n  }\n}\n

      MLX backend (macOS only):

      {\n  \"name\": \"mistral-mlx\",\n  \"backend_type\": \"mlx_lm\",\n  \"backend_options\": {\n    \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n    \"temp\": 0.7,\n    \"max_tokens\": 2048\n  }\n}\n

      vLLM backend:

      {\n  \"name\": \"dialogpt-vllm\",\n  \"backend_type\": \"vllm\",\n  \"backend_options\": {\n    \"model\": \"microsoft/DialoGPT-medium\",\n    \"tensor_parallel_size\": 2,\n    \"gpu_memory_utilization\": 0.9\n  }\n}\n

      "},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"

      You can also manage instances via the REST API:

      # List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\"\n    }\n  }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n
      "},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"

      Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.

      "},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"

      Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:

      curl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\n        \"role\": \"user\",\n        \"content\": \"Hello! Can you help me write a Python function?\"\n      }\n    ],\n    \"max_tokens\": 150,\n    \"temperature\": 0.7\n  }'\n
      "},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"

      You can also use the official OpenAI Python client:

      from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n    base_url=\"http://localhost:8080/v1\",\n    api_key=\"not-needed\"  # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n    model=\"my-model\",  # Use the name of your instance\n    messages=[\n        {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n    ],\n    max_tokens=200,\n    temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n
      "},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"

      Get a list of running instances (models) in OpenAI-compatible format:

      curl http://localhost:8080/v1/models\n
      "},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"
      • Manage instances Managing Instances
      • Explore the API Reference
      • Configure advanced settings in the Configuration guide
      "},{"location":"user-guide/api-reference/","title":"API Reference","text":"

      Complete reference for the Llamactl REST API.

      "},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"

      All API endpoints are relative to the base URL:

      http://localhost:8080/api/v1\n
      "},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"

      Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:

      curl -H \"Authorization: Bearer <your-api-key>\" \\\n  http://localhost:8080/api/v1/instances\n

      The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints

      "},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"

      Get the version information of the llamactl server.

      GET /api/v1/version\n

      Response:

      Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n

      "},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"

      Get help text for the llama-server command.

      GET /api/v1/server/help\n

      Response: Plain text help output from llama-server --help

      "},{"location":"user-guide/api-reference/#get-llama-server-version","title":"Get Llama Server Version","text":"

      Get version information of the llama-server binary.

      GET /api/v1/server/version\n

      Response: Plain text version output from llama-server --version

      "},{"location":"user-guide/api-reference/#list-available-devices","title":"List Available Devices","text":"

      List available devices for llama-server.

      GET /api/v1/server/devices\n

      Response: Plain text device list from llama-server --list-devices

      "},{"location":"user-guide/api-reference/#instances","title":"Instances","text":""},{"location":"user-guide/api-reference/#list-all-instances","title":"List All Instances","text":"

      Get a list of all instances.

      GET /api/v1/instances\n

      Response:

      [\n  {\n    \"name\": \"llama2-7b\",\n    \"status\": \"running\",\n    \"created\": 1705312200\n  }\n]\n

      "},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"

      Get detailed information about a specific instance.

      GET /api/v1/instances/{name}\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"

      Create and start a new instance.

      POST /api/v1/instances/{name}\n

      Request Body: JSON object with instance configuration. See Managing Instances for available configuration options.

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"

      Update an existing instance configuration. See Managing Instances for available configuration options.

      PUT /api/v1/instances/{name}\n

      Request Body: JSON object with configuration fields to update.

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"

      Stop and remove an instance.

      DELETE /api/v1/instances/{name}\n

      Response: 204 No Content

      "},{"location":"user-guide/api-reference/#instance-operations","title":"Instance Operations","text":""},{"location":"user-guide/api-reference/#start-instance","title":"Start Instance","text":"

      Start a stopped instance.

      POST /api/v1/instances/{name}/start\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance

      "},{"location":"user-guide/api-reference/#stop-instance","title":"Stop Instance","text":"

      Stop a running instance.

      POST /api/v1/instances/{name}/stop\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"stopped\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"

      Restart an instance (stop then start).

      POST /api/v1/instances/{name}/restart\n

      Response:

      {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

      "},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"

      Retrieve instance logs.

      GET /api/v1/instances/{name}/logs\n

      Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)

      Response: Plain text log output

      Example:

      curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n

      "},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"

      Proxy HTTP requests directly to the llama-server instance.

      GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n

      This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.

      Example - Check Instance Health:

      curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/proxy/health\n

      This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.

      Error Responses: - 503 Service Unavailable: Instance is not running

      "},{"location":"user-guide/api-reference/#openai-compatible-api","title":"OpenAI-Compatible API","text":"

      Llamactl provides OpenAI-compatible endpoints for inference operations.

      "},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"

      List all instances in OpenAI-compatible format.

      GET /v1/models\n

      Response:

      {\n  \"object\": \"list\",\n  \"data\": [\n    {\n      \"id\": \"llama2-7b\",\n      \"object\": \"model\",\n      \"created\": 1705312200,\n      \"owned_by\": \"llamactl\"\n    }\n  ]\n}\n

      "},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"

      All OpenAI-compatible inference endpoints are available:

      POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n

      Request Body: Standard OpenAI format with model field specifying the instance name

      Example:

      {\n  \"model\": \"llama2-7b\",\n  \"messages\": [\n    {\n      \"role\": \"user\",\n      \"content\": \"Hello, how are you?\"\n    }\n  ]\n}\n

      The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.

      Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit

      "},{"location":"user-guide/api-reference/#instance-status-values","title":"Instance Status Values","text":"

      Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed

      "},{"location":"user-guide/api-reference/#error-responses","title":"Error Responses","text":"

      All endpoints may return error responses in the following format:

      {\n  \"error\": \"Error message description\"\n}\n
      "},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"
      • 200: Success
      • 201: Created
      • 204: No Content (successful deletion)
      • 400: Bad Request (invalid parameters or request body)
      • 401: Unauthorized (missing or invalid API key)
      • 403: Forbidden (insufficient permissions)
      • 404: Not Found (instance not found)
      • 409: Conflict (instance already exists, max instances reached)
      • 500: Internal Server Error
      • 503: Service Unavailable (instance not running)
      "},{"location":"user-guide/api-reference/#examples","title":"Examples","text":""},{"location":"user-guide/api-reference/#complete-instance-lifecycle","title":"Complete Instance Lifecycle","text":"
      # Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"model\": \"/models/llama-2-7b.gguf\"\n  }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-inference-api-key\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\"role\": \"user\", \"content\": \"Hello!\"}\n    ],\n    \"max_tokens\": 100\n  }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n
      "},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"

      You can also directly proxy requests to the llama-server instance:

      # Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"prompt\": \"Hello, world!\",\n    \"n_predict\": 50\n  }'\n
      "},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"

      Llamactl provides endpoints to parse command strings from different backends into instance configuration options.

      "},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"

      Parse a llama-server command string into instance options.

      POST /api/v1/backends/llama-cpp/parse-command\n

      Request Body:

      {\n  \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n

      Response:

      {\n  \"backend_type\": \"llama_cpp\",\n  \"llama_server_options\": {\n    \"model\": \"/path/to/model.gguf\",\n    \"ctx_size\": 2048,\n    \"port\": 8080\n  }\n}\n

      "},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"

      Parse an MLX-LM server command string into instance options.

      POST /api/v1/backends/mlx/parse-command\n

      Request Body:

      {\n  \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n

      Response:

      {\n  \"backend_type\": \"mlx_lm\",\n  \"mlx_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

      "},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"

      Parse a vLLM serve command string into instance options.

      POST /api/v1/backends/vllm/parse-command\n

      Request Body:

      {\n  \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n

      Response:

      {\n  \"backend_type\": \"vllm\",\n  \"vllm_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

      Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error

      "},{"location":"user-guide/api-reference/#auto-generated-documentation","title":"Auto-Generated Documentation","text":"

      The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:

      1. Install the swag tool: go install github.com/swaggo/swag/cmd/swag@latest
      2. Generate docs: swag init -g cmd/server/main.go -o apidocs
      "},{"location":"user-guide/api-reference/#swagger-documentation","title":"Swagger Documentation","text":"

      If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:

      http://localhost:8080/swagger/\n

      This provides a complete interactive interface for testing all API endpoints.

      "},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"

      Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.

      "},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"

      Llamactl provides two ways to manage instances:

      • Web UI: Accessible at http://localhost:8080 with an intuitive dashboard
      • REST API: Programmatic access for automation and integration

      "},{"location":"user-guide/managing-instances/#authentication","title":"Authentication","text":"

      If authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session

      "},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"
      • Switch between light and dark themes
      • Setting is remembered across sessions
      "},{"location":"user-guide/managing-instances/#instance-cards","title":"Instance Cards","text":"

      Each instance is displayed as a card showing:

      • Instance name
      • Health status badge (unknown, ready, error, failed)
      • Action buttons (start, stop, edit, logs, delete)
      "},{"location":"user-guide/managing-instances/#create-instance","title":"Create Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui","title":"Via Web UI","text":"
      1. Click the \"Create Instance\" button on the dashboard
      2. Enter a unique Name for your instance (only required field)
      3. Choose Backend Type:
        • llama.cpp: For GGUF models using llama-server
        • MLX: For MLX-optimized models (macOS only)
        • vLLM: For distributed serving and high-throughput inference
      4. Configure model source:
        • For llama.cpp: GGUF model path or HuggingFace repo
        • For MLX: MLX model path or identifier (e.g., mlx-community/Mistral-7B-Instruct-v0.3-4bit)
        • For vLLM: HuggingFace model identifier (e.g., microsoft/DialoGPT-medium)
      5. Configure optional instance management settings:
        • Auto Restart: Automatically restart instance on failure
        • Max Restarts: Maximum number of restart attempts
        • Restart Delay: Delay in seconds between restart attempts
        • On Demand Start: Start instance when receiving a request to the OpenAI compatible endpoint
        • Idle Timeout: Minutes before stopping idle instance (set to 0 to disable)
      6. Configure backend-specific options:
        • llama.cpp: Threads, context size, GPU layers, port, etc.
        • MLX: Temperature, top-p, adapter path, Python environment, etc.
        • vLLM: Tensor parallel size, GPU memory utilization, quantization, etc.
      7. Click \"Create\" to save the instance
      "},{"location":"user-guide/managing-instances/#via-api","title":"Via API","text":"
      # Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\",\n      \"threads\": 8,\n      \"ctx_size\": 4096,\n      \"gpu_layers\": 32\n    }\n  }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"mlx_lm\",\n    \"backend_options\": {\n      \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n      \"temp\": 0.7,\n      \"top_p\": 0.9,\n      \"max_tokens\": 2048\n    },\n    \"auto_restart\": true,\n    \"max_restarts\": 3\n  }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"vllm\",\n    \"backend_options\": {\n      \"model\": \"microsoft/DialoGPT-medium\",\n      \"tensor_parallel_size\": 2,\n      \"gpu_memory_utilization\": 0.9\n    },\n    \"auto_restart\": true,\n    \"on_demand_start\": true\n  }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n      \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n      \"gpu_layers\": 32\n    }\n  }'\n
      "},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"
      1. Click the \"Start\" button on an instance card
      2. Watch the status change to \"Unknown\"
      3. Monitor progress in the logs
      4. Instance status changes to \"Ready\" when ready
      "},{"location":"user-guide/managing-instances/#via-api_1","title":"Via API","text":"
      curl -X POST http://localhost:8080/api/instances/{name}/start\n
      "},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"
      1. Click the \"Stop\" button on an instance card
      2. Instance gracefully shuts down
      "},{"location":"user-guide/managing-instances/#via-api_2","title":"Via API","text":"
      curl -X POST http://localhost:8080/api/instances/{name}/stop\n
      "},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"
      1. Click the \"Edit\" button on an instance card
      2. Modify settings in the configuration dialog
      3. Changes require instance restart to take effect
      4. Click \"Update & Restart\" to apply changes
      "},{"location":"user-guide/managing-instances/#via-api_3","title":"Via API","text":"

      Modify instance settings:

      curl -X PUT http://localhost:8080/api/instances/{name} \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_options\": {\n      \"threads\": 8,\n      \"context_size\": 4096\n    }\n  }'\n

      Note

      Configuration changes require restarting the instance to take effect.

      "},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"
      1. Click the \"Logs\" button on any instance card
      2. Real-time log viewer opens
      "},{"location":"user-guide/managing-instances/#via-api_4","title":"Via API","text":"

      Check instance status in real-time:

      # Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n
      "},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"
      1. Click the \"Delete\" button on an instance card
      2. Only stopped instances can be deleted
      3. Confirm deletion in the dialog
      "},{"location":"user-guide/managing-instances/#via-api_5","title":"Via API","text":"
      curl -X DELETE http://localhost:8080/api/instances/{name}\n
      "},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"

      Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).

      # Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n

      All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs

      "},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"
      1. The health status badge is displayed on each instance card
      "},{"location":"user-guide/managing-instances/#via-api_6","title":"Via API","text":"

      Check the health status of your instances:

      curl http://localhost:8080/api/instances/{name}/proxy/health\n
      "},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"

      Issues specific to Llamactl deployment and operation.

      "},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"

      Problem: Invalid configuration preventing startup

      Solutions: 1. Use minimal configuration:

      server:\n  host: \"0.0.0.0\"\n  port: 8080\ninstances:\n  port_range: [8000, 9000]\n

      1. Check data directory permissions:
        # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\n
      "},{"location":"user-guide/troubleshooting/#instance-management-issues","title":"Instance Management Issues","text":""},{"location":"user-guide/troubleshooting/#model-loading-failures","title":"Model Loading Failures","text":"

      Problem: Instance fails to start with model loading errors

      Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files

      "},{"location":"user-guide/troubleshooting/#memory-issues","title":"Memory Issues","text":"

      Problem: Out of memory errors or system becomes unresponsive

      Solutions: 1. Reduce context size:

      {\n  \"n_ctx\": 1024\n}\n

      1. Use quantized models:
      2. Try Q4_K_M instead of higher precision models
      3. Use smaller model variants (7B instead of 13B)
      "},{"location":"user-guide/troubleshooting/#gpu-configuration","title":"GPU Configuration","text":"

      Problem: GPU not being used effectively

      Solutions: 1. Configure GPU layers:

      {\n  \"n_gpu_layers\": 35\n}\n

      "},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"

      Problem: Complex model loading, performance, or compatibility issues

      Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:

      Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions

      Testing directly with llama-server:

      # Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n

      This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.

      "},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"

      Problem: Web UI shows CORS errors in browser console

      Solutions: 1. Configure allowed origins:

      server:\n  allowed_origins:\n    - \"http://localhost:3000\"\n    - \"https://yourdomain.com\"\n

      "},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"

      Problem: API requests failing with authentication errors

      Solutions: 1. Disable authentication temporarily:

      auth:\n  require_management_auth: false\n  require_inference_auth: false\n

      1. Configure API keys:

        auth:\n  management_keys:\n    - \"your-management-key\"\n  inference_keys:\n    - \"your-inference-key\"\n

      2. Use correct Authorization header:

        curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances\n

      "},{"location":"user-guide/troubleshooting/#debugging-and-logs","title":"Debugging and Logs","text":""},{"location":"user-guide/troubleshooting/#viewing-instance-logs","title":"Viewing Instance Logs","text":"
      # Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n
      "},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"
      export LLAMACTL_LOG_LEVEL=debug\nllamactl\n
      "},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"

      When reporting issues, include:

      1. System information:

        llamactl --version\n

      2. Configuration file (remove sensitive keys)

      3. Relevant log output

      4. Steps to reproduce the issue

      "}]} \ No newline at end of file diff --git a/dev/sitemap.xml.gz b/dev/sitemap.xml.gz index f7a9f941f31ec9060182f442a3dd23817285a89d..3a67084430950b0bac0e48b8cad93f5cab5fc10e 100644 GIT binary patch delta 15 WcmZ3?w3vxazMF$%^1h91vWx&DBLp!3 delta 15 WcmZ3?w3vxazMF%iXw^nGSw;XM`2+j_ diff --git a/dev/user-guide/api-reference/index.html b/dev/user-guide/api-reference/index.html index 7633cef..9782908 100644 --- a/dev/user-guide/api-reference/index.html +++ b/dev/user-guide/api-reference/index.html @@ -1571,7 +1571,7 @@

      The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.

      Error Responses: -- 400 Bad Request: Invalid request body or missing model name +- 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit

      Instance Status Values

      @@ -1739,7 +1739,7 @@ - September 21, 2025 + September 22, 2025