diff --git a/dev/__pycache__/fix_line_endings.cpython-311.pyc b/dev/__pycache__/fix_line_endings.cpython-311.pyc new file mode 100644 index 0000000..bfd59fb Binary files /dev/null and b/dev/__pycache__/fix_line_endings.cpython-311.pyc differ diff --git a/dev/__pycache__/readme_sync.cpython-311.pyc b/dev/__pycache__/readme_sync.cpython-311.pyc index 9f8937b..3c84a60 100644 Binary files a/dev/__pycache__/readme_sync.cpython-311.pyc and b/dev/__pycache__/readme_sync.cpython-311.pyc differ diff --git a/dev/fix_line_endings.py b/dev/fix_line_endings.py new file mode 100644 index 0000000..9555e6b --- /dev/null +++ b/dev/fix_line_endings.py @@ -0,0 +1,60 @@ +""" +MkDocs hook to fix line endings for proper rendering. +Automatically adds two spaces at the end of lines that need line breaks. +""" +import re + + +def on_page_markdown(markdown, page, config, **kwargs): + """ + Fix line endings in markdown content for proper MkDocs rendering. + Adds two spaces at the end of lines that need line breaks. + """ + lines = markdown.split('\n') + processed_lines = [] + in_code_block = False + + for i, line in enumerate(lines): + stripped = line.strip() + + # Track code blocks + if stripped.startswith('```'): + in_code_block = not in_code_block + processed_lines.append(line) + continue + + # Skip processing inside code blocks + if in_code_block: + processed_lines.append(line) + continue + + # Skip empty lines + if not stripped: + processed_lines.append(line) + continue + + # Skip lines that shouldn't have line breaks: + # - Headers (# ## ###) + # - Blockquotes (>) + # - Table rows (|) + # - Lines already ending with two spaces + # - YAML front matter and HTML tags + # - Standalone punctuation lines + if (stripped.startswith('#') or + stripped.startswith('>') or + '|' in stripped or + line.endswith(' ') or + stripped.startswith('---') or + stripped.startswith('<') or + stripped.endswith('>') or + stripped in ('.', '!', '?', ':', ';', '```', '---', ',')): + processed_lines.append(line) + continue + + # Add two spaces to lines that end with regular text or most punctuation + if stripped and not in_code_block: + processed_lines.append(line.rstrip() + ' ') + else: + processed_lines.append(line) + + return '\n'.join(processed_lines) \ No newline at end of file diff --git a/dev/getting-started/configuration/index.html b/dev/getting-started/configuration/index.html index 94adbb7..2e50cce 100644 --- a/dev/getting-started/configuration/index.html +++ b/dev/getting-started/configuration/index.html @@ -838,12 +838,12 @@
llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:
+llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:
-llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.
+llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.
Here's the default configuration with all available options:
+Here's the default configuration with all available options:
server:
host: "0.0.0.0" # Server host to bind to
port: 8080 # Server port to bind to
@@ -908,7 +908,7 @@
Configuration files are searched in the following locations (in order of precedence):
+Configuration files are searched in the following locations (in order of precedence):
Linux:
- ./llamactl.yaml or ./config.yaml (current directory)
- $HOME/.config/llamactl/config.yaml
@@ -922,7 +922,7 @@
- %APPDATA%\llamactl\config.yaml
- %USERPROFILE%\llamactl\config.yaml
- %PROGRAMDATA%\llamactl\config.yaml
You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.
You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.
server:
@@ -932,11 +932,11 @@
allowed_headers: ["*"] # CORS allowed headers (default: ["*"])
enable_swagger: false # Enable Swagger UI (default: false)
Environment Variables:
-- LLAMACTL_HOST - Server host
-- LLAMACTL_PORT - Server port
-- LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins
-- LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)
Environment Variables:
+- LLAMACTL_HOST - Server host
+- LLAMACTL_PORT - Server port
+- LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins
+- LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)
backends:
llama-cpp:
@@ -968,43 +968,43 @@
# MLX does not support Docker
response_headers: {} # Additional response headers to send with responses
Backend Configuration Fields:
-- command: Executable name/path for the backend
-- args: Default arguments prepended to all instances
-- environment: Environment variables for the backend process (optional)
-- response_headers: Additional response headers to send with responses (optional)
-- docker: Docker-specific configuration (optional)
- - enabled: Boolean flag to enable Docker runtime
- - image: Docker image to use
- - args: Additional arguments passed to docker run
- - environment: Environment variables for the container (optional)
Backend Configuration Fields:
+- command: Executable name/path for the backend
+- args: Default arguments prepended to all instances
+- environment: Environment variables for the backend process (optional)
+- response_headers: Additional response headers to send with responses (optional)
+- docker: Docker-specific configuration (optional)
+ - enabled: Boolean flag to enable Docker runtime
+ - image: Docker image to use
+ - args: Additional arguments passed to docker run
+ - environment: Environment variables for the container (optional)
-If llamactl is behind an NGINX proxy,
X-Accel-Buffering: noresponse header may be required for NGINX to properly stream the responses without buffering.
Environment Variables:
-LlamaCpp Backend:
-- LLAMACTL_LLAMACPP_COMMAND - LlamaCpp executable command
-- LLAMACTL_LLAMACPP_ARGS - Space-separated default arguments
-- LLAMACTL_LLAMACPP_ENV - Environment variables in format "KEY1=value1,KEY2=value2"
-- LLAMACTL_LLAMACPP_DOCKER_ENABLED - Enable Docker runtime (true/false)
-- LLAMACTL_LLAMACPP_DOCKER_IMAGE - Docker image to use
-- LLAMACTL_LLAMACPP_DOCKER_ARGS - Space-separated Docker arguments
-- LLAMACTL_LLAMACPP_DOCKER_ENV - Docker environment variables in format "KEY1=value1,KEY2=value2"
-- LLAMACTL_LLAMACPP_RESPONSE_HEADERS - Response headers in format "KEY1=value1;KEY2=value2"
VLLM Backend:
-- LLAMACTL_VLLM_COMMAND - VLLM executable command
-- LLAMACTL_VLLM_ARGS - Space-separated default arguments
-- LLAMACTL_VLLM_ENV - Environment variables in format "KEY1=value1,KEY2=value2"
-- LLAMACTL_VLLM_DOCKER_ENABLED - Enable Docker runtime (true/false)
-- LLAMACTL_VLLM_DOCKER_IMAGE - Docker image to use
-- LLAMACTL_VLLM_DOCKER_ARGS - Space-separated Docker arguments
-- LLAMACTL_VLLM_DOCKER_ENV - Docker environment variables in format "KEY1=value1,KEY2=value2"
-- LLAMACTL_VLLM_RESPONSE_HEADERS - Response headers in format "KEY1=value1;KEY2=value2"
MLX Backend:
-- LLAMACTL_MLX_COMMAND - MLX executable command
-- LLAMACTL_MLX_ARGS - Space-separated default arguments
-- LLAMACTL_MLX_ENV - Environment variables in format "KEY1=value1,KEY2=value2"
-- LLAMACTL_MLX_RESPONSE_HEADERS - Response headers in format "KEY1=value1;KEY2=value2"
Environment Variables:
+LlamaCpp Backend:
+- LLAMACTL_LLAMACPP_COMMAND - LlamaCpp executable command
+- LLAMACTL_LLAMACPP_ARGS - Space-separated default arguments
+- LLAMACTL_LLAMACPP_ENV - Environment variables in format "KEY1=value1,KEY2=value2"
+- LLAMACTL_LLAMACPP_DOCKER_ENABLED - Enable Docker runtime (true/false)
+- LLAMACTL_LLAMACPP_DOCKER_IMAGE - Docker image to use
+- LLAMACTL_LLAMACPP_DOCKER_ARGS - Space-separated Docker arguments
+- LLAMACTL_LLAMACPP_DOCKER_ENV - Docker environment variables in format "KEY1=value1,KEY2=value2"
+- LLAMACTL_LLAMACPP_RESPONSE_HEADERS - Response headers in format "KEY1=value1;KEY2=value2"
VLLM Backend:
+- LLAMACTL_VLLM_COMMAND - VLLM executable command
+- LLAMACTL_VLLM_ARGS - Space-separated default arguments
+- LLAMACTL_VLLM_ENV - Environment variables in format "KEY1=value1,KEY2=value2"
+- LLAMACTL_VLLM_DOCKER_ENABLED - Enable Docker runtime (true/false)
+- LLAMACTL_VLLM_DOCKER_IMAGE - Docker image to use
+- LLAMACTL_VLLM_DOCKER_ARGS - Space-separated Docker arguments
+- LLAMACTL_VLLM_DOCKER_ENV - Docker environment variables in format "KEY1=value1,KEY2=value2"
+- LLAMACTL_VLLM_RESPONSE_HEADERS - Response headers in format "KEY1=value1;KEY2=value2"
MLX Backend:
+- LLAMACTL_MLX_COMMAND - MLX executable command
+- LLAMACTL_MLX_ARGS - Space-separated default arguments
+- LLAMACTL_MLX_ENV - Environment variables in format "KEY1=value1,KEY2=value2"
+- LLAMACTL_MLX_RESPONSE_HEADERS - Response headers in format "KEY1=value1;KEY2=value2"
instances:
port_range: [8000, 9000] # Port range for instances (default: [8000, 9000])
@@ -1029,8 +1029,8 @@
- LLAMACTL_LOGS_DIR - Log directory path
- LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false)
- LLAMACTL_MAX_INSTANCES - Maximum number of instances
-- LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances
-- LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances
+- LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances
+- LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances
- LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false)
- LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts
- LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds
@@ -1044,13 +1044,13 @@
require_management_auth: true # Require API key for management endpoints (default: true)
management_keys: [] # List of valid management API keys
Environment Variables:
-- LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false)
-- LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys
-- LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false)
-- LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
Environment Variables:
+- LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false)
+- LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys
+- LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false)
+- LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
llamactl supports remote node deployments. Configure remote nodes to deploy instances on remote hosts and manage them centrally.
+llamactl supports remote node deployments. Configure remote nodes to deploy instances on remote hosts and manage them centrally.
local_node: "main" # Name of the local node (default: "main")
nodes: # Node configuration map
main: # Local node (empty address means local)
@@ -1060,13 +1060,13 @@
address: "http://192.168.1.10:8080"
api_key: "worker1-api-key" # Management API key for authentication
Node Configuration Fields:
-- local_node: Specifies which node in the nodes map represents the local node
-- nodes: Map of node configurations
- - address: HTTP/HTTPS URL of the remote node (empty for local node)
- - api_key: Management API key for authenticating with the remote node
Environment Variables:
-- LLAMACTL_LOCAL_NODE - Name of the local node
Node Configuration Fields:
+- local_node: Specifies which node in the nodes map represents the local node
+- nodes: Map of node configurations
+ - address: HTTP/HTTPS URL of the remote node (empty for local node)
+ - api_key: Management API key for authenticating with the remote node
Environment Variables:
+- LLAMACTL_LOCAL_NODE - Name of the local node
This guide will walk you through installing Llamactl on your system.
+This guide will walk you through installing Llamactl on your system.
llamactl supports multiple backends. Install at least one:
-For llama.cpp backend (all platforms):
-You need llama-server from llama.cpp installed:
llamactl supports multiple backends. Install at least one:
+For llama.cpp backend (all platforms):
+You need llama-server from llama.cpp installed:
Or build from source - see llama.cpp docs
-For MLX backend (macOS only):
-MLX provides optimized inference on Apple Silicon. Install MLX-LM:
+Or build from source - see llama.cpp docs
+For MLX backend (macOS only):
+MLX provides optimized inference on Apple Silicon. Install MLX-LM:
# Install via pip (requires Python 3.8+)
pip install mlx-lm
@@ -908,9 +908,9 @@
source mlx-env/bin/activate
pip install mlx-lm
Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)
-For vLLM backend:
-vLLM provides high-throughput distributed serving for LLMs. Install vLLM:
+Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)
+For vLLM backend:
+vLLM provides high-throughput distributed serving for LLMs. Install vLLM:
Download the latest release from the GitHub releases page:
+Download the latest release from the GitHub releases page:
# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
@@ -935,12 +935,12 @@
# Windows - Download from releases page
llamactl provides Dockerfiles for creating Docker images with backends pre-installed. The resulting images include the latest llamactl release with the respective backend.
-Available Dockerfiles (CUDA):
-- llamactl with llama.cpp CUDA: docker/Dockerfile.llamacpp (based on ghcr.io/ggml-org/llama.cpp:server-cuda)
-- llamactl with vLLM CUDA: docker/Dockerfile.vllm (based on vllm/vllm-openai:latest)
-- llamactl built from source: docker/Dockerfile.source (multi-stage build with webui)
Note: These Dockerfiles are configured for CUDA. For other platforms (CPU, ROCm, Vulkan, etc.), adapt the base image. For llama.cpp, see available tags at llama.cpp Docker docs. For vLLM, check vLLM docs.
+llamactl provides Dockerfiles for creating Docker images with backends pre-installed. The resulting images include the latest llamactl release with the respective backend.
+Available Dockerfiles (CUDA):
+- llamactl with llama.cpp CUDA: docker/Dockerfile.llamacpp (based on ghcr.io/ggml-org/llama.cpp:server-cuda)
+- llamactl with vLLM CUDA: docker/Dockerfile.vllm (based on vllm/vllm-openai:latest)
+- llamactl built from source: docker/Dockerfile.source (multi-stage build with webui)
Note: These Dockerfiles are configured for CUDA. For other platforms (CPU, ROCm, Vulkan, etc.), adapt the base image. For llama.cpp, see available tags at llama.cpp Docker docs. For vLLM, check vLLM docs.
# Clone the repository
git clone https://github.com/lordmathis/llamactl.git
@@ -955,11 +955,11 @@
# Or start llamactl with vLLM backend
docker-compose -f docker/docker-compose.yml up llamactl-vllm -d
Access the dashboard at: -- llamactl with llama.cpp: http://localhost:8080 -- llamactl with vLLM: http://localhost:8081
+Access the dashboard at:
+- llamactl with llama.cpp: http://localhost:8080
+- llamactl with vLLM: http://localhost:8081
llamactl with llama.cpp CUDA: +
llamactl with llama.cpp CUDA:
docker build -f docker/Dockerfile.llamacpp -t llamactl:llamacpp-cuda .
docker run -d \
--name llamactl-llamacpp \
@@ -968,7 +968,7 @@
-v ~/.cache/llama.cpp:/root/.cache/llama.cpp \
llamactl:llamacpp-cuda
llamactl with vLLM CUDA: +
llamactl with vLLM CUDA:
docker build -f docker/Dockerfile.vllm -t llamactl:vllm-cuda .
docker run -d \
--name llamactl-vllm \
@@ -977,7 +977,7 @@
-v ~/.cache/huggingface:/root/.cache/huggingface \
llamactl:vllm-cuda
llamactl built from source: +
llamactl built from source:
docker build -f docker/Dockerfile.source -t llamactl:source .
docker run -d \
--name llamactl \
@@ -985,11 +985,11 @@
llamactl:source
Requirements: -- Go 1.24 or later -- Node.js 22 or later -- Git
-If you prefer to build from source:
+Requirements:
+- Go 1.24 or later
+- Node.js 22 or later
+- Git
If you prefer to build from source:
# Clone the repository
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
@@ -1001,16 +1001,16 @@
go build -o llamactl ./cmd/server
For deployments with remote nodes: -- Install llamactl on each node using any of the methods above -- Configure API keys for authentication between nodes
+For deployments with remote nodes:
+- Install llamactl on each node using any of the methods above
+- Configure API keys for authentication between nodes
Verify your installation by checking the version:
+Verify your installation by checking the version:
Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
-For remote node deployments, see the Configuration Guide for node setup instructions.
+Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
+For remote node deployments, see the Configuration Guide for node setup instructions.
diff --git a/dev/getting-started/quick-start/index.html b/dev/getting-started/quick-start/index.html index 8c4f988..5b90891 100644 --- a/dev/getting-started/quick-start/index.html +++ b/dev/getting-started/quick-start/index.html @@ -880,43 +880,43 @@This guide will help you get Llamactl up and running in just a few minutes.
+This guide will help you get Llamactl up and running in just a few minutes.
Start the Llamactl server:
+Start the Llamactl server:
-By default, Llamactl will start on http://localhost:8080.
By default, Llamactl will start on http://localhost:8080.
Open your web browser and navigate to:
+Open your web browser and navigate to:
-Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
-You should see the Llamactl web interface.
+Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
+You should see the Llamactl web interface.
Additional Options: Backend-specific parameters
+Additional Options: Backend-specific parameters
Click "Create Instance"
+Click "Create Instance"
Once created, you can:
+Once created, you can:
Here are basic example configurations for each backend:
-llama.cpp backend: +
Here are basic example configurations for each backend:
+llama.cpp backend:
MLX backend (macOS only): +
MLX backend (macOS only):
vLLM backend: +
vLLM backend:
Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:
Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:
backends:
vllm:
command: "vllm"
@@ -962,7 +962,7 @@
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
You can also manage instances via the REST API:
+You can also manage instances via the REST API:
# List all instances
curl http://localhost:8080/api/instances
@@ -980,9 +980,9 @@
curl -X POST http://localhost:8080/api/instances/my-model/start
Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
+Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
+Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
@@ -998,7 +998,7 @@
}'
You can also use the official OpenAI Python client:
+You can also use the official OpenAI Python client:
from openai import OpenAI
# Point the client to your Llamactl server
@@ -1020,14 +1020,14 @@
print(response.choices[0].message.content)
Get a list of running instances (models) in OpenAI-compatible format:
+Get a list of running instances (models) in OpenAI-compatible format:
Welcome to the Llamactl documentation!
-
Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
+Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
If you need help or have questions:
+If you need help or have questions:
MIT License - see the LICENSE file.
+MIT License - see the LICENSE file.
diff --git a/dev/search/search_index.json b/dev/search/search_index.json index a65774a..4c2d3ce 100644 --- a/dev/search/search_index.json +++ b/dev/search/search_index.json @@ -1 +1 @@ -{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Llamactl Documentation","text":"Welcome to the Llamactl documentation!
"},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
"},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"If you need help or have questions:
MIT License - see the LICENSE file.
"},{"location":"getting-started/configuration/","title":"Configuration","text":"llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:
Defaults < Configuration file < Environment variables\n llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.
"},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"Here's the default configuration with all available options:
server:\n host: \"0.0.0.0\" # Server host to bind to\n port: 8080 # Server port to bind to\n allowed_origins: [\"*\"] # Allowed CORS origins (default: all)\n allowed_headers: [\"*\"] # Allowed CORS headers (default: all)\n enable_swagger: false # Enable Swagger UI for API docs\n\nbackends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n response_headers: {} # Additional response headers to send with responses\n\ninstances:\n port_range: [8000, 9000] # Port range for instances\n data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)\n configs_dir: ~/.local/share/llamactl/instances # Instance configs directory\n logs_dir: ~/.local/share/llamactl/logs # Logs directory\n auto_create_dirs: true # Auto-create data/config/logs dirs if missing\n max_instances: -1 # Max instances (-1 = unlimited)\n max_running_instances: -1 # Max running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Auto-restart new instances by default\n default_max_restarts: 3 # Max restarts for new instances\n default_restart_delay: 5 # Restart delay (seconds) for new instances\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Idle instance timeout check in minutes\n\nauth:\n require_inference_auth: true # Require auth for inference endpoints\n inference_keys: [] # Keys for inference endpoints\n require_management_auth: true # Require auth for management endpoints\n management_keys: [] # Keys for management endpoints\n\nlocal_node: \"main\" # Name of the local node (default: \"main\")\nnodes: # Node configuration for multi-node deployment\n main: # Default local node (empty config)\n"},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"Configuration files are searched in the following locations (in order of precedence):
Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml
macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml
Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml
You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.
server:\n host: \"0.0.0.0\" # Server host to bind to (default: \"0.0.0.0\")\n port: 8080 # Server port to bind to (default: 8080)\n allowed_origins: [\"*\"] # CORS allowed origins (default: [\"*\"])\n allowed_headers: [\"*\"] # CORS allowed headers (default: [\"*\"])\n enable_swagger: false # Enable Swagger UI (default: false)\n Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)
backends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n # MLX does not support Docker\n response_headers: {} # Additional response headers to send with responses\n Backend Configuration Fields: - command: Executable name/path for the backend - args: Default arguments prepended to all instances - environment: Environment variables for the backend process (optional) - response_headers: Additional response headers to send with responses (optional) - docker: Docker-specific configuration (optional) - enabled: Boolean flag to enable Docker runtime - image: Docker image to use - args: Additional arguments passed to docker run - environment: Environment variables for the container (optional)
If llamactl is behind an NGINX proxy, X-Accel-Buffering: no response header may be required for NGINX to properly stream the responses without buffering.
Environment Variables:
LlamaCpp Backend: - LLAMACTL_LLAMACPP_COMMAND - LlamaCpp executable command - LLAMACTL_LLAMACPP_ARGS - Space-separated default arguments - LLAMACTL_LLAMACPP_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_LLAMACPP_DOCKER_IMAGE - Docker image to use - LLAMACTL_LLAMACPP_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_LLAMACPP_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
VLLM Backend: - LLAMACTL_VLLM_COMMAND - VLLM executable command - LLAMACTL_VLLM_ARGS - Space-separated default arguments - LLAMACTL_VLLM_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_VLLM_DOCKER_IMAGE - Docker image to use - LLAMACTL_VLLM_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_VLLM_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
MLX Backend: - LLAMACTL_MLX_COMMAND - MLX executable command - LLAMACTL_MLX_ARGS - Space-separated default arguments - LLAMACTL_MLX_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_MLX_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
instances:\n port_range: [8000, 9000] # Port range for instances (default: [8000, 9000])\n data_dir: \"~/.local/share/llamactl\" # Directory for all llamactl data (default varies by OS)\n configs_dir: \"~/.local/share/llamactl/instances\" # Directory for instance configs (default: data_dir/instances)\n logs_dir: \"~/.local/share/llamactl/logs\" # Directory for instance logs (default: data_dir/logs)\n auto_create_dirs: true # Automatically create data/config/logs directories (default: true)\n max_instances: -1 # Maximum instances (-1 = unlimited)\n max_running_instances: -1 # Maximum running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Default auto-restart setting\n default_max_restarts: 3 # Default maximum restart attempts\n default_restart_delay: 5 # Default restart delay in seconds\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Default instance timeout check interval in minutes\n Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes
auth:\n require_inference_auth: true # Require API key for OpenAI endpoints (default: true)\n inference_keys: [] # List of valid inference API keys\n require_management_auth: true # Require API key for management endpoints (default: true)\n management_keys: [] # List of valid management API keys\n Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
llamactl supports remote node deployments. Configure remote nodes to deploy instances on remote hosts and manage them centrally.
local_node: \"main\" # Name of the local node (default: \"main\")\nnodes: # Node configuration map\n main: # Local node (empty address means local)\n address: \"\" # Not used for local node\n api_key: \"\" # Not used for local node\n worker1: # Remote worker node\n address: \"http://192.168.1.10:8080\"\n api_key: \"worker1-api-key\" # Management API key for authentication\n Node Configuration Fields: - local_node: Specifies which node in the nodes map represents the local node - nodes: Map of node configurations - address: HTTP/HTTPS URL of the remote node (empty for local node) - api_key: Management API key for authenticating with the remote node
Environment Variables: - LLAMACTL_LOCAL_NODE - Name of the local node
This guide will walk you through installing Llamactl on your system.
"},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"llamactl supports multiple backends. Install at least one:
For llama.cpp backend (all platforms):
You need llama-server from llama.cpp installed:
# Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n Or build from source - see llama.cpp docs
For MLX backend (macOS only):
MLX provides optimized inference on Apple Silicon. Install MLX-LM:
# Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)
For vLLM backend:
vLLM provides high-throughput distributed serving for LLMs. Install vLLM:
# Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n"},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"Download the latest release from the GitHub releases page:
# Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n"},{"location":"getting-started/installation/#option-2-docker","title":"Option 2: Docker","text":"llamactl provides Dockerfiles for creating Docker images with backends pre-installed. The resulting images include the latest llamactl release with the respective backend.
Available Dockerfiles (CUDA): - llamactl with llama.cpp CUDA: docker/Dockerfile.llamacpp (based on ghcr.io/ggml-org/llama.cpp:server-cuda) - llamactl with vLLM CUDA: docker/Dockerfile.vllm (based on vllm/vllm-openai:latest) - llamactl built from source: docker/Dockerfile.source (multi-stage build with webui)
Note: These Dockerfiles are configured for CUDA. For other platforms (CPU, ROCm, Vulkan, etc.), adapt the base image. For llama.cpp, see available tags at llama.cpp Docker docs. For vLLM, check vLLM docs.
"},{"location":"getting-started/installation/#using-docker-compose","title":"Using Docker Compose","text":"# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Create directories for data and models\nmkdir -p data/llamacpp data/vllm models\n\n# Start llamactl with llama.cpp backend\ndocker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d\n\n# Or start llamactl with vLLM backend\ndocker-compose -f docker/docker-compose.yml up llamactl-vllm -d\n Access the dashboard at: - llamactl with llama.cpp: http://localhost:8080 - llamactl with vLLM: http://localhost:8081
"},{"location":"getting-started/installation/#using-docker-build-and-run","title":"Using Docker Build and Run","text":"llamactl with llama.cpp CUDA:
docker build -f docker/Dockerfile.llamacpp -t llamactl:llamacpp-cuda .\ndocker run -d \\\n --name llamactl-llamacpp \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/llama.cpp:/root/.cache/llama.cpp \\\n llamactl:llamacpp-cuda\n llamactl with vLLM CUDA:
docker build -f docker/Dockerfile.vllm -t llamactl:vllm-cuda .\ndocker run -d \\\n --name llamactl-vllm \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/huggingface:/root/.cache/huggingface \\\n llamactl:vllm-cuda\n llamactl built from source:
docker build -f docker/Dockerfile.source -t llamactl:source .\ndocker run -d \\\n --name llamactl \\\n -p 8080:8080 \\\n llamactl:source\n"},{"location":"getting-started/installation/#option-3-build-from-source","title":"Option 3: Build from Source","text":"Requirements: - Go 1.24 or later - Node.js 22 or later - Git
If you prefer to build from source:
# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n"},{"location":"getting-started/installation/#remote-node-installation","title":"Remote Node Installation","text":"For deployments with remote nodes: - Install llamactl on each node using any of the methods above - Configure API keys for authentication between nodes
"},{"location":"getting-started/installation/#verification","title":"Verification","text":"Verify your installation by checking the version:
llamactl --version\n"},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
For remote node deployments, see the Configuration Guide for node setup instructions.
"},{"location":"getting-started/quick-start/","title":"Quick Start","text":"This guide will help you get Llamactl up and running in just a few minutes.
"},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"Start the Llamactl server:
llamactl\n By default, Llamactl will start on http://localhost:8080.
Open your web browser and navigate to:
http://localhost:8080\n Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
You should see the Llamactl web interface.
"},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"Additional Options: Backend-specific parameters
Click \"Create Instance\"
Once created, you can:
Here are basic example configurations for each backend:
llama.cpp backend:
{\n \"name\": \"llama2-7b\",\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n \"threads\": 4,\n \"ctx_size\": 2048,\n \"gpu_layers\": 32\n }\n}\n MLX backend (macOS only):
{\n \"name\": \"mistral-mlx\",\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"max_tokens\": 2048\n }\n}\n vLLM backend:
{\n \"name\": \"dialogpt-vllm\",\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n }\n}\n"},{"location":"getting-started/quick-start/#docker-support","title":"Docker Support","text":"Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:
backends:\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n docker:\n enabled: true\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n"},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"You can also manage instances via the REST API:
# List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\"\n }\n }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n"},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
"},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
curl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello! Can you help me write a Python function?\"\n }\n ],\n \"max_tokens\": 150,\n \"temperature\": 0.7\n }'\n"},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"You can also use the official OpenAI Python client:
from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n base_url=\"http://localhost:8080/v1\",\n api_key=\"not-needed\" # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n model=\"my-model\", # Use the name of your instance\n messages=[\n {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n ],\n max_tokens=200,\n temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n"},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"Get a list of running instances (models) in OpenAI-compatible format:
curl http://localhost:8080/v1/models\n"},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"Complete reference for the Llamactl REST API.
"},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"All API endpoints are relative to the base URL:
http://localhost:8080/api/v1\n"},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:
curl -H \"Authorization: Bearer <your-api-key>\" \\\n http://localhost:8080/api/v1/instances\n The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints
"},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"Get the version information of the llamactl server.
GET /api/v1/version\n Response:
Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n"},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"Get help text for the llama-server command.
GET /api/v1/server/help\n Response: Plain text help output from llama-server --help
Get version information of the llama-server binary.
GET /api/v1/server/version\n Response: Plain text version output from llama-server --version
List available devices for llama-server.
GET /api/v1/server/devices\n Response: Plain text device list from llama-server --list-devices
Get a list of all instances.
GET /api/v1/instances\n Response:
[\n {\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n }\n]\n"},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"Get detailed information about a specific instance.
GET /api/v1/instances/{name}\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"Create and start a new instance.
POST /api/v1/instances/{name}\n Request Body: JSON object with instance configuration. Common fields include:
backend_type: Backend type (llama_cpp, mlx_lm, or vllm)backend_options: Backend-specific configurationauto_restart: Enable automatic restart on failuremax_restarts: Maximum restart attemptsrestart_delay: Delay between restarts in secondson_demand_start: Start instance when receiving requestsidle_timeout: Idle timeout in minutesenvironment: Environment variables as key-value pairsnodes: Array with single node name to deploy the instance to (for remote deployments)See Managing Instances for complete configuration options.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"Update an existing instance configuration. See Managing Instances for available configuration options.
PUT /api/v1/instances/{name}\n Request Body: JSON object with configuration fields to update.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"Stop and remove an instance.
DELETE /api/v1/instances/{name}\n Response: 204 No Content
Start a stopped instance.
POST /api/v1/instances/{name}/start\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance
Stop a running instance.
POST /api/v1/instances/{name}/stop\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"stopped\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"Restart an instance (stop then start).
POST /api/v1/instances/{name}/restart\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"Retrieve instance logs.
GET /api/v1/instances/{name}/logs\n Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)
Response: Plain text log output
Example:
curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n"},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"Proxy HTTP requests directly to the llama-server instance.
GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.
Example - Check Instance Health:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/proxy/health\n This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.
Error Responses: - 503 Service Unavailable: Instance is not running
Llamactl provides OpenAI-compatible endpoints for inference operations.
"},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"List all instances in OpenAI-compatible format.
GET /v1/models\n Response:
{\n \"object\": \"list\",\n \"data\": [\n {\n \"id\": \"llama2-7b\",\n \"object\": \"model\",\n \"created\": 1705312200,\n \"owned_by\": \"llamactl\"\n }\n ]\n}\n"},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"All OpenAI-compatible inference endpoints are available:
POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n Request Body: Standard OpenAI format with model field specifying the instance name
Example:
{\n \"model\": \"llama2-7b\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello, how are you?\"\n }\n ]\n}\n The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.
Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit
Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed
All endpoints may return error responses in the following format:
{\n \"error\": \"Error message description\"\n}\n"},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"200: Success201: Created204: No Content (successful deletion)400: Bad Request (invalid parameters or request body)401: Unauthorized (missing or invalid API key)403: Forbidden (insufficient permissions)404: Not Found (instance not found)409: Conflict (instance already exists, max instances reached)500: Internal Server Error503: Service Unavailable (instance not running)# Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0\",\n \"OMP_NUM_THREADS\": \"8\"\n }\n }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello!\"}\n ],\n \"max_tokens\": 100\n }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n"},{"location":"user-guide/api-reference/#remote-node-instance-example","title":"Remote Node Instance Example","text":"# Create instance on specific remote node\ncurl -X POST http://localhost:8080/api/v1/instances/remote-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"nodes\": [\"worker1\"]\n }'\n\n# Check status of remote instance\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/remote-model\n\n# Use remote instance with OpenAI-compatible API\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"remote-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello from remote node!\"}\n ]\n }'\n"},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"You can also directly proxy requests to the llama-server instance:
# Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"prompt\": \"Hello, world!\",\n \"n_predict\": 50\n }'\n"},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
"},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"Parse a llama-server command string into instance options.
POST /api/v1/backends/llama-cpp/parse-command\n Request Body:
{\n \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n Response:
{\n \"backend_type\": \"llama_cpp\",\n \"llama_server_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"ctx_size\": 2048,\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"Parse an MLX-LM server command string into instance options.
POST /api/v1/backends/mlx/parse-command\n Request Body:
{\n \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"mlx_lm\",\n \"mlx_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"Parse a vLLM serve command string into instance options.
POST /api/v1/backends/vllm/parse-command\n Request Body:
{\n \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"vllm\",\n \"vllm_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error
The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:
go install github.com/swaggo/swag/cmd/swag@latestswag init -g cmd/server/main.go -o apidocsIf swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
http://localhost:8080/swagger/\n This provides a complete interactive interface for testing all API endpoints.
"},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.
"},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"Llamactl provides two ways to manage instances:
http://localhost:8080 with an intuitive dashboardIf authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session
"},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"Each instance is displayed as a card showing:
mlx-community/Mistral-7B-Instruct-v0.3-4bit)microsoft/DialoGPT-medium)# Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"threads\": 8,\n \"ctx_size\": 4096,\n \"gpu_layers\": 32\n }\n }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"top_p\": 0.9,\n \"max_tokens\": 2048\n },\n \"auto_restart\": true,\n \"max_restarts\": 3\n }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n },\n \"auto_restart\": true,\n \"on_demand_start\": true,\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0,1\",\n \"NCCL_DEBUG\": \"INFO\",\n \"PYTHONPATH\": \"/custom/path\"\n }\n }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n \"gpu_layers\": 32\n }\n }'\n\n# Create instance on specific remote node\ncurl -X POST http://localhost:8080/api/instances/remote-llama \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"nodes\": [\"worker1\"]\n }'\n"},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/start\n"},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/stop\n"},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"Modify instance settings:
curl -X PUT http://localhost:8080/api/instances/{name} \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_options\": {\n \"threads\": 8,\n \"context_size\": 4096\n }\n }'\n Note
Configuration changes require restarting the instance to take effect.
"},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"Check instance status in real-time:
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n"},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"curl -X DELETE http://localhost:8080/api/instances/{name}\n"},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs
"},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"Check the health status of your instances:
curl http://localhost:8080/api/instances/{name}/proxy/health\n"},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"Issues specific to Llamactl deployment and operation.
"},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"Problem: Invalid configuration preventing startup
Solutions: 1. Use minimal configuration:
server:\n host: \"0.0.0.0\"\n port: 8080\ninstances:\n port_range: [8000, 9000]\n # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\nProblem: Instance fails to start with model loading errors
Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files
Problem: Out of memory errors or system becomes unresponsive
Solutions: 1. Reduce context size:
{\n \"n_ctx\": 1024\n}\n Problem: GPU not being used effectively
Solutions: 1. Configure GPU layers:
{\n \"n_gpu_layers\": 35\n}\n"},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"Problem: Complex model loading, performance, or compatibility issues
Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:
Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions
Testing directly with llama-server:
# Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.
"},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"Problem: Web UI shows CORS errors in browser console
Solutions: 1. Configure allowed origins:
server:\n allowed_origins:\n - \"http://localhost:3000\"\n - \"https://yourdomain.com\"\n"},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"Problem: API requests failing with authentication errors
Solutions: 1. Disable authentication temporarily:
auth:\n require_management_auth: false\n require_inference_auth: false\n Configure API keys:
auth:\n management_keys:\n - \"your-management-key\"\n inference_keys:\n - \"your-inference-key\"\n Use correct Authorization header:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances\n Problem: Remote instances not appearing or cannot be managed
Solutions: 1. Verify node configuration:
local_node: \"main\" # Must match a key in nodes map\nnodes:\n main:\n address: \"\" # Empty for local node\n worker1:\n address: \"http://worker1.internal:8080\"\n api_key: \"secure-key\" # Must match worker1's management key\n curl -H \"Authorization: Bearer remote-node-key\" \\\n http://remote-node:8080/api/v1/instances\n# Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n"},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"export LLAMACTL_LOG_LEVEL=debug\nllamactl\n"},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"When reporting issues, include:
System information:
llamactl --version\n Configuration file (remove sensitive keys)
Relevant log output
Steps to reproduce the issue
Welcome to the Llamactl documentation!
"},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"
Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.
"},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"If you need help or have questions:
MIT License - see the LICENSE file.
"},{"location":"getting-started/configuration/","title":"Configuration","text":"llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:
Defaults < Configuration file < Environment variables\n llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.
"},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"Here's the default configuration with all available options:
server:\n host: \"0.0.0.0\" # Server host to bind to\n port: 8080 # Server port to bind to\n allowed_origins: [\"*\"] # Allowed CORS origins (default: all)\n allowed_headers: [\"*\"] # Allowed CORS headers (default: all)\n enable_swagger: false # Enable Swagger UI for API docs\n\nbackends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n response_headers: {} # Additional response headers to send with responses\n\ninstances:\n port_range: [8000, 9000] # Port range for instances\n data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)\n configs_dir: ~/.local/share/llamactl/instances # Instance configs directory\n logs_dir: ~/.local/share/llamactl/logs # Logs directory\n auto_create_dirs: true # Auto-create data/config/logs dirs if missing\n max_instances: -1 # Max instances (-1 = unlimited)\n max_running_instances: -1 # Max running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Auto-restart new instances by default\n default_max_restarts: 3 # Max restarts for new instances\n default_restart_delay: 5 # Restart delay (seconds) for new instances\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Idle instance timeout check in minutes\n\nauth:\n require_inference_auth: true # Require auth for inference endpoints\n inference_keys: [] # Keys for inference endpoints\n require_management_auth: true # Require auth for management endpoints\n management_keys: [] # Keys for management endpoints\n\nlocal_node: \"main\" # Name of the local node (default: \"main\")\nnodes: # Node configuration for multi-node deployment\n main: # Default local node (empty config)\n"},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"Configuration files are searched in the following locations (in order of precedence):
Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml
macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml
Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml
You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.
server:\n host: \"0.0.0.0\" # Server host to bind to (default: \"0.0.0.0\")\n port: 8080 # Server port to bind to (default: 8080)\n allowed_origins: [\"*\"] # CORS allowed origins (default: [\"*\"])\n allowed_headers: [\"*\"] # CORS allowed headers (default: [\"*\"])\n enable_swagger: false # Enable Swagger UI (default: false)\n Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)
backends:\n llama-cpp:\n command: \"llama-server\"\n args: []\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"ghcr.io/ggml-org/llama.cpp:server\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n environment: {} # Environment variables for the backend process\n docker:\n enabled: false # Enable Docker runtime (default: false)\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n environment: {}\n response_headers: {} # Additional response headers to send with responses\n\n mlx:\n command: \"mlx_lm.server\"\n args: []\n environment: {} # Environment variables for the backend process\n # MLX does not support Docker\n response_headers: {} # Additional response headers to send with responses\n Backend Configuration Fields: - command: Executable name/path for the backend - args: Default arguments prepended to all instances - environment: Environment variables for the backend process (optional) - response_headers: Additional response headers to send with responses (optional) - docker: Docker-specific configuration (optional) - enabled: Boolean flag to enable Docker runtime - image: Docker image to use - args: Additional arguments passed to docker run - environment: Environment variables for the container (optional)
If llamactl is behind an NGINX proxy, X-Accel-Buffering: no response header may be required for NGINX to properly stream the responses without buffering.
Environment Variables:
LlamaCpp Backend: - LLAMACTL_LLAMACPP_COMMAND - LlamaCpp executable command - LLAMACTL_LLAMACPP_ARGS - Space-separated default arguments - LLAMACTL_LLAMACPP_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_LLAMACPP_DOCKER_IMAGE - Docker image to use - LLAMACTL_LLAMACPP_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_LLAMACPP_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_LLAMACPP_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
VLLM Backend: - LLAMACTL_VLLM_COMMAND - VLLM executable command - LLAMACTL_VLLM_ARGS - Space-separated default arguments - LLAMACTL_VLLM_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_DOCKER_ENABLED - Enable Docker runtime (true/false) - LLAMACTL_VLLM_DOCKER_IMAGE - Docker image to use - LLAMACTL_VLLM_DOCKER_ARGS - Space-separated Docker arguments - LLAMACTL_VLLM_DOCKER_ENV - Docker environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_VLLM_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
MLX Backend: - LLAMACTL_MLX_COMMAND - MLX executable command - LLAMACTL_MLX_ARGS - Space-separated default arguments - LLAMACTL_MLX_ENV - Environment variables in format \"KEY1=value1,KEY2=value2\" - LLAMACTL_MLX_RESPONSE_HEADERS - Response headers in format \"KEY1=value1;KEY2=value2\"
instances:\n port_range: [8000, 9000] # Port range for instances (default: [8000, 9000])\n data_dir: \"~/.local/share/llamactl\" # Directory for all llamactl data (default varies by OS)\n configs_dir: \"~/.local/share/llamactl/instances\" # Directory for instance configs (default: data_dir/instances)\n logs_dir: \"~/.local/share/llamactl/logs\" # Directory for instance logs (default: data_dir/logs)\n auto_create_dirs: true # Automatically create data/config/logs directories (default: true)\n max_instances: -1 # Maximum instances (-1 = unlimited)\n max_running_instances: -1 # Maximum running instances (-1 = unlimited)\n enable_lru_eviction: true # Enable LRU eviction for idle instances\n default_auto_restart: true # Default auto-restart setting\n default_max_restarts: 3 # Default maximum restart attempts\n default_restart_delay: 5 # Default restart delay in seconds\n default_on_demand_start: true # Default on-demand start setting\n on_demand_start_timeout: 120 # Default on-demand start timeout in seconds\n timeout_check_interval: 5 # Default instance timeout check interval in minutes\n Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes
auth:\n require_inference_auth: true # Require API key for OpenAI endpoints (default: true)\n inference_keys: [] # List of valid inference API keys\n require_management_auth: true # Require API key for management endpoints (default: true)\n management_keys: [] # List of valid management API keys\n Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys
llamactl supports remote node deployments. Configure remote nodes to deploy instances on remote hosts and manage them centrally.
local_node: \"main\" # Name of the local node (default: \"main\")\nnodes: # Node configuration map\n main: # Local node (empty address means local)\n address: \"\" # Not used for local node\n api_key: \"\" # Not used for local node\n worker1: # Remote worker node\n address: \"http://192.168.1.10:8080\"\n api_key: \"worker1-api-key\" # Management API key for authentication\n Node Configuration Fields: - local_node: Specifies which node in the nodes map represents the local node - nodes: Map of node configurations - address: HTTP/HTTPS URL of the remote node (empty for local node) - api_key: Management API key for authenticating with the remote node
Environment Variables: - LLAMACTL_LOCAL_NODE - Name of the local node
This guide will walk you through installing Llamactl on your system.
"},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"llamactl supports multiple backends. Install at least one:
For llama.cpp backend (all platforms):
You need llama-server from llama.cpp installed:
# Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n Or build from source - see llama.cpp docs
For MLX backend (macOS only):
MLX provides optimized inference on Apple Silicon. Install MLX-LM:
# Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)
For vLLM backend:
vLLM provides high-throughput distributed serving for LLMs. Install vLLM:
# Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n"},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"Download the latest release from the GitHub releases page:
# Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n"},{"location":"getting-started/installation/#option-2-docker","title":"Option 2: Docker","text":"llamactl provides Dockerfiles for creating Docker images with backends pre-installed. The resulting images include the latest llamactl release with the respective backend.
Available Dockerfiles (CUDA): - llamactl with llama.cpp CUDA: docker/Dockerfile.llamacpp (based on ghcr.io/ggml-org/llama.cpp:server-cuda) - llamactl with vLLM CUDA: docker/Dockerfile.vllm (based on vllm/vllm-openai:latest) - llamactl built from source: docker/Dockerfile.source (multi-stage build with webui)
Note: These Dockerfiles are configured for CUDA. For other platforms (CPU, ROCm, Vulkan, etc.), adapt the base image. For llama.cpp, see available tags at llama.cpp Docker docs. For vLLM, check vLLM docs.
"},{"location":"getting-started/installation/#using-docker-compose","title":"Using Docker Compose","text":"# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Create directories for data and models\nmkdir -p data/llamacpp data/vllm models\n\n# Start llamactl with llama.cpp backend\ndocker-compose -f docker/docker-compose.yml up llamactl-llamacpp -d\n\n# Or start llamactl with vLLM backend\ndocker-compose -f docker/docker-compose.yml up llamactl-vllm -d\n Access the dashboard at: - llamactl with llama.cpp: http://localhost:8080 - llamactl with vLLM: http://localhost:8081
"},{"location":"getting-started/installation/#using-docker-build-and-run","title":"Using Docker Build and Run","text":"llamactl with llama.cpp CUDA:
docker build -f docker/Dockerfile.llamacpp -t llamactl:llamacpp-cuda .\ndocker run -d \\\n --name llamactl-llamacpp \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/llama.cpp:/root/.cache/llama.cpp \\\n llamactl:llamacpp-cuda\n llamactl with vLLM CUDA:
docker build -f docker/Dockerfile.vllm -t llamactl:vllm-cuda .\ndocker run -d \\\n --name llamactl-vllm \\\n --gpus all \\\n -p 8080:8080 \\\n -v ~/.cache/huggingface:/root/.cache/huggingface \\\n llamactl:vllm-cuda\n llamactl built from source:
docker build -f docker/Dockerfile.source -t llamactl:source .\ndocker run -d \\\n --name llamactl \\\n -p 8080:8080 \\\n llamactl:source\n"},{"location":"getting-started/installation/#option-3-build-from-source","title":"Option 3: Build from Source","text":"Requirements: - Go 1.24 or later - Node.js 22 or later - Git
If you prefer to build from source:
# Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n"},{"location":"getting-started/installation/#remote-node-installation","title":"Remote Node Installation","text":"For deployments with remote nodes: - Install llamactl on each node using any of the methods above - Configure API keys for authentication between nodes
"},{"location":"getting-started/installation/#verification","title":"Verification","text":"Verify your installation by checking the version:
llamactl --version\n"},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!
For remote node deployments, see the Configuration Guide for node setup instructions.
"},{"location":"getting-started/quick-start/","title":"Quick Start","text":"This guide will help you get Llamactl up and running in just a few minutes.
"},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"Start the Llamactl server:
llamactl\n By default, Llamactl will start on http://localhost:8080.
Open your web browser and navigate to:
http://localhost:8080\n Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
You should see the Llamactl web interface.
"},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"Additional Options: Backend-specific parameters
Click \"Create Instance\"
Once created, you can:
Here are basic example configurations for each backend:
llama.cpp backend:
{\n \"name\": \"llama2-7b\",\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n \"threads\": 4,\n \"ctx_size\": 2048,\n \"gpu_layers\": 32\n }\n}\n MLX backend (macOS only):
{\n \"name\": \"mistral-mlx\",\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"max_tokens\": 2048\n }\n}\n vLLM backend:
{\n \"name\": \"dialogpt-vllm\",\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n }\n}\n"},{"location":"getting-started/quick-start/#docker-support","title":"Docker Support","text":"Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:
backends:\n vllm:\n command: \"vllm\"\n args: [\"serve\"]\n docker:\n enabled: true\n image: \"vllm/vllm-openai:latest\"\n args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n"},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"You can also manage instances via the REST API:
# List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\"\n }\n }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n"},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
"},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
curl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello! Can you help me write a Python function?\"\n }\n ],\n \"max_tokens\": 150,\n \"temperature\": 0.7\n }'\n"},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"You can also use the official OpenAI Python client:
from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n base_url=\"http://localhost:8080/v1\",\n api_key=\"not-needed\" # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n model=\"my-model\", # Use the name of your instance\n messages=[\n {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n ],\n max_tokens=200,\n temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n"},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"Get a list of running instances (models) in OpenAI-compatible format:
curl http://localhost:8080/v1/models\n"},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"Complete reference for the Llamactl REST API.
"},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"All API endpoints are relative to the base URL:
http://localhost:8080/api/v1\n"},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:
curl -H \"Authorization: Bearer <your-api-key>\" \\\n http://localhost:8080/api/v1/instances\n The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints
"},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"Get the version information of the llamactl server.
GET /api/v1/version\n Response:
Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n"},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"Get help text for the llama-server command.
GET /api/v1/server/help\n Response: Plain text help output from llama-server --help
Get version information of the llama-server binary.
GET /api/v1/server/version\n Response: Plain text version output from llama-server --version
List available devices for llama-server.
GET /api/v1/server/devices\n Response: Plain text device list from llama-server --list-devices
Get a list of all instances.
GET /api/v1/instances\n Response:
[\n {\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n }\n]\n"},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"Get detailed information about a specific instance.
GET /api/v1/instances/{name}\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"Create and start a new instance.
POST /api/v1/instances/{name}\n Request Body: JSON object with instance configuration. Common fields include:
backend_type: Backend type (llama_cpp, mlx_lm, or vllm) backend_options: Backend-specific configuration auto_restart: Enable automatic restart on failure max_restarts: Maximum restart attempts restart_delay: Delay between restarts in seconds on_demand_start: Start instance when receiving requests idle_timeout: Idle timeout in minutes environment: Environment variables as key-value pairs nodes: Array with single node name to deploy the instance to (for remote deployments) See Managing Instances for complete configuration options.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"Update an existing instance configuration. See Managing Instances for available configuration options.
PUT /api/v1/instances/{name}\n Request Body: JSON object with configuration fields to update.
Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"Stop and remove an instance.
DELETE /api/v1/instances/{name}\n Response: 204 No Content
Start a stopped instance.
POST /api/v1/instances/{name}/start\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance
Stop a running instance.
POST /api/v1/instances/{name}/stop\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"stopped\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"Restart an instance (stop then start).
POST /api/v1/instances/{name}/restart\n Response:
{\n \"name\": \"llama2-7b\",\n \"status\": \"running\",\n \"created\": 1705312200\n}\n"},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"Retrieve instance logs.
GET /api/v1/instances/{name}/logs\n Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)
Response: Plain text log output
Example:
curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n"},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"Proxy HTTP requests directly to the llama-server instance.
GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.
Example - Check Instance Health:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/proxy/health\n This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.
Error Responses: - 503 Service Unavailable: Instance is not running
Llamactl provides OpenAI-compatible endpoints for inference operations.
"},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"List all instances in OpenAI-compatible format.
GET /v1/models\n Response:
{\n \"object\": \"list\",\n \"data\": [\n {\n \"id\": \"llama2-7b\",\n \"object\": \"model\",\n \"created\": 1705312200,\n \"owned_by\": \"llamactl\"\n }\n ]\n}\n"},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"All OpenAI-compatible inference endpoints are available:
POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n Request Body: Standard OpenAI format with model field specifying the instance name
Example:
{\n \"model\": \"llama2-7b\",\n \"messages\": [\n {\n \"role\": \"user\",\n \"content\": \"Hello, how are you?\"\n }\n ]\n}\n The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.
Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit
Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed
All endpoints may return error responses in the following format:
{\n \"error\": \"Error message description\"\n}\n"},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"200: Success 201: Created 204: No Content (successful deletion) 400: Bad Request (invalid parameters or request body) 401: Unauthorized (missing or invalid API key) 403: Forbidden (insufficient permissions) 404: Not Found (instance not found) 409: Conflict (instance already exists, max instances reached) 500: Internal Server Error 503: Service Unavailable (instance not running) # Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0\",\n \"OMP_NUM_THREADS\": \"8\"\n }\n }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"my-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello!\"}\n ],\n \"max_tokens\": 100\n }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/my-model\n"},{"location":"user-guide/api-reference/#remote-node-instance-example","title":"Remote Node Instance Example","text":"# Create instance on specific remote node\ncurl -X POST http://localhost:8080/api/v1/instances/remote-model \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-2-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"nodes\": [\"worker1\"]\n }'\n\n# Check status of remote instance\ncurl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances/remote-model\n\n# Use remote instance with OpenAI-compatible API\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-inference-api-key\" \\\n -d '{\n \"model\": \"remote-model\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Hello from remote node!\"}\n ]\n }'\n"},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"You can also directly proxy requests to the llama-server instance:
# Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n -H \"Content-Type: application/json\" \\\n -H \"Authorization: Bearer your-api-key\" \\\n -d '{\n \"prompt\": \"Hello, world!\",\n \"n_predict\": 50\n }'\n"},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
"},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"Parse a llama-server command string into instance options.
POST /api/v1/backends/llama-cpp/parse-command\n Request Body:
{\n \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n Response:
{\n \"backend_type\": \"llama_cpp\",\n \"llama_server_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"ctx_size\": 2048,\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"Parse an MLX-LM server command string into instance options.
POST /api/v1/backends/mlx/parse-command\n Request Body:
{\n \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"mlx_lm\",\n \"mlx_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n"},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"Parse a vLLM serve command string into instance options.
POST /api/v1/backends/vllm/parse-command\n Request Body:
{\n \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n Response:
{\n \"backend_type\": \"vllm\",\n \"vllm_server_options\": {\n \"model\": \"/path/to/model\",\n \"port\": 8080\n }\n}\n Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error
The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:
go install github.com/swaggo/swag/cmd/swag@latest swag init -g cmd/server/main.go -o apidocs If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
http://localhost:8080/swagger/\n This provides a complete interactive interface for testing all API endpoints.
"},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.
"},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"Llamactl provides two ways to manage instances:
http://localhost:8080 with an intuitive dashboard "},{"location":"user-guide/managing-instances/#authentication","title":"Authentication","text":"
If authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session
"},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"Each instance is displayed as a card showing:
mlx-community/Mistral-7B-Instruct-v0.3-4bit) microsoft/DialoGPT-medium) # Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/path/to/model.gguf\",\n \"threads\": 8,\n \"ctx_size\": 4096,\n \"gpu_layers\": 32\n }\n }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"mlx_lm\",\n \"backend_options\": {\n \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n \"temp\": 0.7,\n \"top_p\": 0.9,\n \"max_tokens\": 2048\n },\n \"auto_restart\": true,\n \"max_restarts\": 3\n }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"vllm\",\n \"backend_options\": {\n \"model\": \"microsoft/DialoGPT-medium\",\n \"tensor_parallel_size\": 2,\n \"gpu_memory_utilization\": 0.9\n },\n \"auto_restart\": true,\n \"on_demand_start\": true,\n \"environment\": {\n \"CUDA_VISIBLE_DEVICES\": \"0,1\",\n \"NCCL_DEBUG\": \"INFO\",\n \"PYTHONPATH\": \"/custom/path\"\n }\n }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n \"gpu_layers\": 32\n }\n }'\n\n# Create instance on specific remote node\ncurl -X POST http://localhost:8080/api/instances/remote-llama \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_type\": \"llama_cpp\",\n \"backend_options\": {\n \"model\": \"/models/llama-7b.gguf\",\n \"gpu_layers\": 32\n },\n \"nodes\": [\"worker1\"]\n }'\n"},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/start\n"},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"curl -X POST http://localhost:8080/api/instances/{name}/stop\n"},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"Modify instance settings:
curl -X PUT http://localhost:8080/api/instances/{name} \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"backend_options\": {\n \"threads\": 8,\n \"context_size\": 4096\n }\n }'\n Note
Configuration changes require restarting the instance to take effect.
"},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"Check instance status in real-time:
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n"},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"curl -X DELETE http://localhost:8080/api/instances/{name}\n"},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).
# Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs
"},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"Check the health status of your instances:
curl http://localhost:8080/api/instances/{name}/proxy/health\n"},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"Issues specific to Llamactl deployment and operation.
"},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"Problem: Invalid configuration preventing startup
Solutions: 1. Use minimal configuration:
server:\n host: \"0.0.0.0\"\n port: 8080\ninstances:\n port_range: [8000, 9000]\n # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\nProblem: Instance fails to start with model loading errors
Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files
Problem: Out of memory errors or system becomes unresponsive
Solutions: 1. Reduce context size:
{\n \"n_ctx\": 1024\n}\n Problem: GPU not being used effectively
Solutions: 1. Configure GPU layers:
{\n \"n_gpu_layers\": 35\n}\n"},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"Problem: Complex model loading, performance, or compatibility issues
Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:
Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions
Testing directly with llama-server:
# Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.
"},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"Problem: Web UI shows CORS errors in browser console
Solutions: 1. Configure allowed origins:
server:\n allowed_origins:\n - \"http://localhost:3000\"\n - \"https://yourdomain.com\"\n"},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"Problem: API requests failing with authentication errors
Solutions: 1. Disable authentication temporarily:
auth:\n require_management_auth: false\n require_inference_auth: false\n Configure API keys:
auth:\n management_keys:\n - \"your-management-key\"\n inference_keys:\n - \"your-inference-key\"\n Use correct Authorization header:
curl -H \"Authorization: Bearer your-api-key\" \\\n http://localhost:8080/api/v1/instances\n Problem: Remote instances not appearing or cannot be managed
Solutions: 1. Verify node configuration:
local_node: \"main\" # Must match a key in nodes map\nnodes:\n main:\n address: \"\" # Empty for local node\n worker1:\n address: \"http://worker1.internal:8080\"\n api_key: \"secure-key\" # Must match worker1's management key\n curl -H \"Authorization: Bearer remote-node-key\" \\\n http://remote-node:8080/api/v1/instances\n# Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n"},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"export LLAMACTL_LOG_LEVEL=debug\nllamactl\n"},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"When reporting issues, include:
System information:
llamactl --version\n Configuration file (remove sensitive keys)
Relevant log output
Steps to reproduce the issue
Complete reference for the Llamactl REST API.
+Complete reference for the Llamactl REST API.
All API endpoints are relative to the base URL:
+All API endpoints are relative to the base URL:
Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:
+Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:
-The server supports two types of API keys: -- Management API Keys: Required for instance management operations (CRUD operations on instances) -- Inference API Keys: Required for OpenAI-compatible inference endpoints
+The server supports two types of API keys:
+- Management API Keys: Required for instance management operations (CRUD operations on instances)
+- Inference API Keys: Required for OpenAI-compatible inference endpoints
Get the version information of the llamactl server.
+Get the version information of the llamactl server.
-Response: +
Response:
Get help text for the llama-server command.
+Get help text for the llama-server command.
-Response: Plain text help output from llama-server --help
Response: Plain text help output from llama-server --help
Get version information of the llama-server binary.
+Get version information of the llama-server binary.
-Response: Plain text version output from llama-server --version
Response: Plain text version output from llama-server --version
List available devices for llama-server.
+List available devices for llama-server.
-Response: Plain text device list from llama-server --list-devices
Response: Plain text device list from llama-server --list-devices
Get a list of all instances.
+Get a list of all instances.
-Response: +
Response:
Get detailed information about a specific instance.
+Get detailed information about a specific instance.
-Response: +
Response:
Create and start a new instance.
+Create and start a new instance.
-Request Body: JSON object with instance configuration. Common fields include:
+Request Body: JSON object with instance configuration. Common fields include:
backend_type: Backend type (llama_cpp, mlx_lm, or vllm)backend_options: Backend-specific configurationauto_restart: Enable automatic restart on failuremax_restarts: Maximum restart attemptsrestart_delay: Delay between restarts in secondson_demand_start: Start instance when receiving requestsidle_timeout: Idle timeout in minutesenvironment: Environment variables as key-value pairsnodes: Array with single node name to deploy the instance to (for remote deployments)backend_type: Backend type (llama_cpp, mlx_lm, or vllm) backend_options: Backend-specific configuration auto_restart: Enable automatic restart on failure max_restarts: Maximum restart attempts restart_delay: Delay between restarts in seconds on_demand_start: Start instance when receiving requests idle_timeout: Idle timeout in minutes environment: Environment variables as key-value pairs nodes: Array with single node name to deploy the instance to (for remote deployments) See Managing Instances for complete configuration options.
-Response: +
See Managing Instances for complete configuration options.
+Response:
Update an existing instance configuration. See Managing Instances for available configuration options.
+Update an existing instance configuration. See Managing Instances for available configuration options.
-Request Body: JSON object with configuration fields to update.
-Response: +
Request Body: JSON object with configuration fields to update.
+Response:
Stop and remove an instance.
+Stop and remove an instance.
-Response: 204 No Content
Response: 204 No Content
Start a stopped instance.
+Start a stopped instance.
-Response: +
Response:
Error Responses:
-- 409 Conflict: Maximum number of running instances reached
-- 500 Internal Server Error: Failed to start instance
Error Responses:
+- 409 Conflict: Maximum number of running instances reached
+- 500 Internal Server Error: Failed to start instance
Stop a running instance.
+Stop a running instance.
-Response: +
Response:
Restart an instance (stop then start).
+Restart an instance (stop then start).
-Response: +
Response:
Retrieve instance logs.
+Retrieve instance logs.
-Query Parameters:
-- lines: Number of lines to return (default: all lines, use -1 for all)
Response: Plain text log output
-Example: +
Query Parameters:
+- lines: Number of lines to return (default: all lines, use -1 for all)
Response: Plain text log output
+Example:
Proxy HTTP requests directly to the llama-server instance.
+Proxy HTTP requests directly to the llama-server instance.
-This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.
Example - Check Instance Health: +
This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.
Example - Check Instance Health:
curl -H "Authorization: Bearer your-api-key" \
http://localhost:8080/api/v1/instances/my-model/proxy/health
This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.
Error Responses:
-- 503 Service Unavailable: Instance is not running
This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.
Error Responses:
+- 503 Service Unavailable: Instance is not running
Llamactl provides OpenAI-compatible endpoints for inference operations.
+Llamactl provides OpenAI-compatible endpoints for inference operations.
List all instances in OpenAI-compatible format.
+List all instances in OpenAI-compatible format.
-Response: +
Response:
All OpenAI-compatible inference endpoints are available:
+All OpenAI-compatible inference endpoints are available:
POST /v1/chat/completions
POST /v1/completions
POST /v1/embeddings
POST /v1/rerank
POST /v1/reranking
Request Body: Standard OpenAI format with model field specifying the instance name
Example: +
Request Body: Standard OpenAI format with model field specifying the instance name
Example:
The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.
Error Responses:
-- 400 Bad Request: Invalid request body or missing instance name
-- 503 Service Unavailable: Instance is not running and on-demand start is disabled
-- 409 Conflict: Cannot start instance due to maximum instances limit
The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.
Error Responses:
+- 400 Bad Request: Invalid request body or missing instance name
+- 503 Service Unavailable: Instance is not running and on-demand start is disabled
+- 409 Conflict: Cannot start instance due to maximum instances limit
Instances can have the following status values:
-- stopped: Instance is not running
-- running: Instance is running and ready to accept requests
+
Instances can have the following status values:
+- stopped: Instance is not running
+- running: Instance is running and ready to accept requests
- failed: Instance failed to start or crashed
All endpoints may return error responses in the following format:
+All endpoints may return error responses in the following format:
200: Success201: Created204: No Content (successful deletion)400: Bad Request (invalid parameters or request body)401: Unauthorized (missing or invalid API key)403: Forbidden (insufficient permissions)404: Not Found (instance not found)409: Conflict (instance already exists, max instances reached)500: Internal Server Error503: Service Unavailable (instance not running)200: Success 201: Created 204: No Content (successful deletion) 400: Bad Request (invalid parameters or request body) 401: Unauthorized (missing or invalid API key) 403: Forbidden (insufficient permissions) 404: Not Found (instance not found) 409: Conflict (instance already exists, max instances reached) 500: Internal Server Error 503: Service Unavailable (instance not running) You can also directly proxy requests to the llama-server instance:
+You can also directly proxy requests to the llama-server instance:
# Direct proxy to instance (bypasses OpenAI compatibility layer)
curl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \
-H "Content-Type: application/json" \
@@ -1716,17 +1716,17 @@
Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
+Llamactl provides endpoints to parse command strings from different backends into instance configuration options.
Parse a llama-server command string into instance options.
+Parse a llama-server command string into instance options.
-Request Body: +
Request Body:
Response: +
Response:
Parse an MLX-LM server command string into instance options.
+Parse an MLX-LM server command string into instance options.
-Request Body: +
Request Body:
Response: +
Response:
Parse a vLLM serve command string into instance options.
+Parse a vLLM serve command string into instance options.
-Request Body: +
Request Body:
Response: +
Response:
Error Responses for Parse Commands:
-- 400 Bad Request: Invalid request body, empty command, or parse error
-- 500 Internal Server Error: Encoding error
Error Responses for Parse Commands:
+- 400 Bad Request: Invalid request body, empty command, or parse error
+- 500 Internal Server Error: Encoding error
The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:
+The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:
go install github.com/swaggo/swag/cmd/swag@latestswag init -g cmd/server/main.go -o apidocsgo install github.com/swaggo/swag/cmd/swag@latest swag init -g cmd/server/main.go -o apidocs If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
+If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:
-This provides a complete interactive interface for testing all API endpoints.
+This provides a complete interactive interface for testing all API endpoints.
diff --git a/dev/user-guide/managing-instances/index.html b/dev/user-guide/managing-instances/index.html index ca1999b..8ad6120 100644 --- a/dev/user-guide/managing-instances/index.html +++ b/dev/user-guide/managing-instances/index.html @@ -1228,63 +1228,63 @@Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.
+Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.
Llamactl provides two ways to manage instances:
+Llamactl provides two ways to manage instances:
http://localhost:8080 with an intuitive dashboardhttp://localhost:8080 with an intuitive dashboard 
If authentication is enabled: -1. Navigate to the web UI -2. Enter your credentials -3. Bearer token is stored for the session
+If authentication is enabled:
+1. Navigate to the web UI
+2. Enter your credentials
+3. Bearer token is stored for the session
Each instance is displayed as a card showing:
+Each instance is displayed as a card showing:

mlx-community/Mistral-7B-Instruct-v0.3-4bit)microsoft/DialoGPT-medium)mlx-community/Mistral-7B-Instruct-v0.3-4bit) microsoft/DialoGPT-medium) curl -X POST http://localhost:8080/api/instances/{name}/start
@@ -1375,8 +1375,8 @@
Stop Instance¶
Via Web UI¶
-- Click the "Stop" button on an instance card
-- Instance gracefully shuts down
+- Click the "Stop" button on an instance card
+- Instance gracefully shuts down
Via API¶
curl -X POST http://localhost:8080/api/instances/{name}/stop
@@ -1384,13 +1384,13 @@
Edit Instance¶
Via Web UI¶
-- Click the "Edit" button on an instance card
-- Modify settings in the configuration dialog
-- Changes require instance restart to take effect
-- Click "Update & Restart" to apply changes
+- Click the "Edit" button on an instance card
+- Modify settings in the configuration dialog
+- Changes require instance restart to take effect
+- Click "Update & Restart" to apply changes
Via API¶
-Modify instance settings:
+Modify instance settings:
curl -X PUT http://localhost:8080/api/instances/{name} \
-H "Content-Type: application/json" \
-d '{
@@ -1402,45 +1402,45 @@
Note
-Configuration changes require restarting the instance to take effect.
+Configuration changes require restarting the instance to take effect.
View Logs¶
Via Web UI¶
-- Click the "Logs" button on any instance card
-- Real-time log viewer opens
+- Click the "Logs" button on any instance card
+- Real-time log viewer opens
Via API¶
-Check instance status in real-time:
+Check instance status in real-time:
Delete Instance¶
Via Web UI¶
-- Click the "Delete" button on an instance card
-- Only stopped instances can be deleted
-- Confirm deletion in the dialog
+- Click the "Delete" button on an instance card
+- Only stopped instances can be deleted
+- Confirm deletion in the dialog
Via API¶
Instance Proxy¶
-Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).
+Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).
-All backends provide OpenAI-compatible endpoints. Check the respective documentation:
-- llama-server docs
-- MLX-LM docs
-- vLLM docs
+All backends provide OpenAI-compatible endpoints. Check the respective documentation:
+- llama-server docs
+- MLX-LM docs
+- vLLM docs
Instance Health¶
Via Web UI¶
-- The health status badge is displayed on each instance card
+- The health status badge is displayed on each instance card
Via API¶
-Check the health status of your instances:
+Check the health status of your instances:
diff --git a/dev/user-guide/troubleshooting/index.html b/dev/user-guide/troubleshooting/index.html
index 0de9c30..e3f6eeb 100644
--- a/dev/user-guide/troubleshooting/index.html
+++ b/dev/user-guide/troubleshooting/index.html
@@ -998,12 +998,12 @@
Troubleshooting¶
-Issues specific to Llamactl deployment and operation.
+Issues specific to Llamactl deployment and operation.
Configuration Issues¶
Invalid Configuration¶
-Problem: Invalid configuration preventing startup
-Solutions:
-1. Use minimal configuration:
+
Problem: Invalid configuration preventing startup
+Solutions:
+1. Use minimal configuration:
-- Check data directory permissions:
+
- Check data directory permissions:
Instance Management Issues¶
Model Loading Failures¶
-Problem: Instance fails to start with model loading errors
+Problem: Instance fails to start with model loading errors
Common Solutions:
- llama-server not found: Ensure llama-server binary is in PATH
- Wrong model format: Ensure model is in GGUF format
- Insufficient memory: Use smaller model or reduce context size
- Path issues: Use absolute paths to model files
Memory Issues¶
-Problem: Out of memory errors or system becomes unresponsive
-Solutions:
-1. Reduce context size:
+
Problem: Out of memory errors or system becomes unresponsive
+Solutions:
+1. Reduce context size:
{
"n_ctx": 1024
}
@@ -1038,16 +1038,16 @@
- Use smaller model variants (7B instead of 13B)
GPU Configuration¶
-Problem: GPU not being used effectively
-Solutions:
-1. Configure GPU layers:
+
Problem: GPU not being used effectively
+Solutions:
+1. Configure GPU layers:
Advanced Instance Issues¶
-Problem: Complex model loading, performance, or compatibility issues
-Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:
+Problem: Complex model loading, performance, or compatibility issues
+Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:
Resources:
- llama.cpp Documentation: https://github.com/ggml/llama.cpp
- llama.cpp Issues: https://github.com/ggml/llama.cpp/issues
@@ -1056,28 +1056,28 @@
# Test your model and parameters directly with llama-server
llama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35
-This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.
+This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.
API and Network Issues¶
CORS Errors¶
-Problem: Web UI shows CORS errors in browser console
-Solutions:
-1. Configure allowed origins:
+
Problem: Web UI shows CORS errors in browser console
+Solutions:
+1. Configure allowed origins:
Authentication Issues¶
-Problem: API requests failing with authentication errors
-Solutions:
-1. Disable authentication temporarily:
+
Problem: API requests failing with authentication errors
+Solutions:
+1. Disable authentication temporarily:
-
-
Configure API keys:
+
Configure API keys:
-
-
Use correct Authorization header:
+
Use correct Authorization header:
@@ -1094,9 +1094,9 @@
Remote Node Issues¶
Node Configuration¶
-Problem: Remote instances not appearing or cannot be managed
-Solutions:
-1. Verify node configuration:
+
Problem: Remote instances not appearing or cannot be managed
+Solutions:
+1. Verify node configuration:
Getting Help¶
-When reporting issues, include:
+When reporting issues, include:
-
-
System information:
+
System information:
-
-
Configuration file (remove sensitive keys)
+Configuration file (remove sensitive keys)
-
-
Relevant log output
+Relevant log output
-
-
Steps to reproduce the issue
+Steps to reproduce the issue