From 19662f2778cbbace0ed4452aeb32d1838200b418 Mon Sep 17 00:00:00 2001 From: lordmathis Date: Thu, 25 Sep 2025 21:07:47 +0000 Subject: [PATCH] Deployed a824f06 to dev with MkDocs 1.5.3 and mike 2.0.0 --- dev/__pycache__/readme_sync.cpython-311.pyc | Bin 3201 -> 3201 bytes dev/getting-started/configuration/index.html | 107 +++++++++++----- dev/getting-started/quick-start/index.html | 127 ++++++++++++------- dev/index.html | 1 + dev/search/search_index.json | 2 +- dev/sitemap.xml | 14 +- dev/sitemap.xml.gz | Bin 292 -> 291 bytes 7 files changed, 161 insertions(+), 90 deletions(-) diff --git a/dev/__pycache__/readme_sync.cpython-311.pyc b/dev/__pycache__/readme_sync.cpython-311.pyc index 1c9f1b2359528bc9cb6984224a4cf5bb54d838fc..a3882ef231218a4b454636f56a0f7c0c7a863fc0 100644 GIT binary patch delta 20 acmZpaY?S0)&dbZi00g4zuWsZn;{gCK!35#} delta 20 acmZpaY?S0)&dbZi00fOJmp5{k@c;lWsRW?_ diff --git a/dev/getting-started/configuration/index.html b/dev/getting-started/configuration/index.html index 1eb3a74..ccd588b 100644 --- a/dev/getting-started/configuration/index.html +++ b/dev/getting-started/configuration/index.html @@ -851,31 +851,49 @@ enable_swagger: false # Enable Swagger UI for API docs backends: - llama_executable: llama-server # Path to llama-server executable - mlx_lm_executable: mlx_lm.server # Path to mlx_lm.server executable - vllm_executable: vllm # Path to vllm executable - -instances: - port_range: [8000, 9000] # Port range for instances - data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below) - configs_dir: ~/.local/share/llamactl/instances # Instance configs directory - logs_dir: ~/.local/share/llamactl/logs # Logs directory - auto_create_dirs: true # Auto-create data/config/logs dirs if missing - max_instances: -1 # Max instances (-1 = unlimited) - max_running_instances: -1 # Max running instances (-1 = unlimited) - enable_lru_eviction: true # Enable LRU eviction for idle instances - default_auto_restart: true # Auto-restart new instances by default - default_max_restarts: 3 # Max restarts for new instances - default_restart_delay: 5 # Restart delay (seconds) for new instances - default_on_demand_start: true # Default on-demand start setting - on_demand_start_timeout: 120 # Default on-demand start timeout in seconds - timeout_check_interval: 5 # Idle instance timeout check in minutes - -auth: - require_inference_auth: true # Require auth for inference endpoints - inference_keys: [] # Keys for inference endpoints - require_management_auth: true # Require auth for management endpoints - management_keys: [] # Keys for management endpoints + llama-cpp: + command: "llama-server" + args: [] + docker: + enabled: false + image: "ghcr.io/ggml-org/llama.cpp:server" + args: ["run", "--rm", "--network", "host", "--gpus", "all"] + environment: {} + + vllm: + command: "vllm" + args: ["serve"] + docker: + enabled: false + image: "vllm/vllm-openai:latest" + args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"] + environment: {} + + mlx: + command: "mlx_lm.server" + args: [] + +instances: + port_range: [8000, 9000] # Port range for instances + data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below) + configs_dir: ~/.local/share/llamactl/instances # Instance configs directory + logs_dir: ~/.local/share/llamactl/logs # Logs directory + auto_create_dirs: true # Auto-create data/config/logs dirs if missing + max_instances: -1 # Max instances (-1 = unlimited) + max_running_instances: -1 # Max running instances (-1 = unlimited) + enable_lru_eviction: true # Enable LRU eviction for idle instances + default_auto_restart: true # Auto-restart new instances by default + default_max_restarts: 3 # Max restarts for new instances + default_restart_delay: 5 # Restart delay (seconds) for new instances + default_on_demand_start: true # Default on-demand start setting + on_demand_start_timeout: 120 # Default on-demand start timeout in seconds + timeout_check_interval: 5 # Idle instance timeout check in minutes + +auth: + require_inference_auth: true # Require auth for inference endpoints + inference_keys: [] # Keys for inference endpoints + require_management_auth: true # Require auth for management endpoints + management_keys: [] # Keys for management endpoints

Configuration Files

Configuration File Locations

@@ -909,14 +927,37 @@ - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)

Backend Configuration

backends:
-  llama_executable: "llama-server"     # Path to llama-server executable (default: "llama-server")
-  mlx_lm_executable: "mlx_lm.server"   # Path to mlx_lm.server executable (default: "mlx_lm.server")
-  vllm_executable: "vllm"              # Path to vllm executable (default: "vllm")
+  llama-cpp:
+    command: "llama-server"
+    args: []
+    docker:
+      enabled: false                   # Enable Docker runtime (default: false)
+      image: "ghcr.io/ggml-org/llama.cpp:server"
+      args: ["run", "--rm", "--network", "host", "--gpus", "all"]
+      environment: {}
+
+  vllm:
+    command: "vllm"
+    args: ["serve"]
+    docker:
+      enabled: false
+      image: "vllm/vllm-openai:latest"
+      args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
+      environment: {}
+
+  mlx:
+    command: "mlx_lm.server"
+    args: []
+    # MLX does not support Docker
 
-

Environment Variables: -- LLAMACTL_LLAMA_EXECUTABLE - Path to llama-server executable -- LLAMACTL_MLX_LM_EXECUTABLE - Path to mlx_lm.server executable -- LLAMACTL_VLLM_EXECUTABLE - Path to vllm executable

+

Backend Configuration Fields: +- command: Executable name/path for the backend +- args: Default arguments prepended to all instances +- docker: Docker-specific configuration (optional) + - enabled: Boolean flag to enable Docker runtime + - image: Docker image to use + - args: Additional arguments passed to docker run + - environment: Environment variables for the container (optional)

Instance Configuration

instances:
   port_range: [8000, 9000]                          # Port range for instances (default: [8000, 9000])
@@ -986,7 +1027,7 @@
     
       
     
-    September 21, 2025
+    September 24, 2025
   
 
     
diff --git a/dev/getting-started/quick-start/index.html b/dev/getting-started/quick-start/index.html
index 9318927..8c4f988 100644
--- a/dev/getting-started/quick-start/index.html
+++ b/dev/getting-started/quick-start/index.html
@@ -501,6 +501,15 @@
     
   
   
+
+      
+        
  • + + + Docker Support + + +
  • @@ -781,6 +790,15 @@ +
  • + +
  • + + + Docker Support + + +
  • @@ -932,67 +950,78 @@ } }
  • +

    Docker Support

    +

    Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:

    +
    backends:
    +  vllm:
    +    command: "vllm"
    +    args: ["serve"]
    +    docker:
    +      enabled: true
    +      image: "vllm/vllm-openai:latest"
    +      args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
    +

    Using the API

    You can also manage instances via the REST API:

    -
    # List all instances
    -curl http://localhost:8080/api/instances
    -
    -# Create a new llama.cpp instance
    -curl -X POST http://localhost:8080/api/instances/my-model \
    -  -H "Content-Type: application/json" \
    -  -d '{
    -    "backend_type": "llama_cpp",
    -    "backend_options": {
    -      "model": "/path/to/model.gguf"
    -    }
    -  }'
    -
    -# Start an instance
    -curl -X POST http://localhost:8080/api/instances/my-model/start
    +
    # List all instances
    +curl http://localhost:8080/api/instances
    +
    +# Create a new llama.cpp instance
    +curl -X POST http://localhost:8080/api/instances/my-model \
    +  -H "Content-Type: application/json" \
    +  -d '{
    +    "backend_type": "llama_cpp",
    +    "backend_options": {
    +      "model": "/path/to/model.gguf"
    +    }
    +  }'
    +
    +# Start an instance
    +curl -X POST http://localhost:8080/api/instances/my-model/start
     

    OpenAI Compatible API

    Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.

    Chat Completions

    Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:

    -
    curl -X POST http://localhost:8080/v1/chat/completions \
    -  -H "Content-Type: application/json" \
    -  -d '{
    -    "model": "my-model",
    -    "messages": [
    -      {
    -        "role": "user",
    -        "content": "Hello! Can you help me write a Python function?"
    -      }
    -    ],
    -    "max_tokens": 150,
    -    "temperature": 0.7
    -  }'
    +
    curl -X POST http://localhost:8080/v1/chat/completions \
    +  -H "Content-Type: application/json" \
    +  -d '{
    +    "model": "my-model",
    +    "messages": [
    +      {
    +        "role": "user",
    +        "content": "Hello! Can you help me write a Python function?"
    +      }
    +    ],
    +    "max_tokens": 150,
    +    "temperature": 0.7
    +  }'
     

    Using with Python OpenAI Client

    You can also use the official OpenAI Python client:

    -
    from openai import OpenAI
    -
    -# Point the client to your Llamactl server
    -client = OpenAI(
    -    base_url="http://localhost:8080/v1",
    -    api_key="not-needed"  # Llamactl doesn't require API keys by default
    -)
    -
    -# Create a chat completion
    -response = client.chat.completions.create(
    -    model="my-model",  # Use the name of your instance
    -    messages=[
    -        {"role": "user", "content": "Explain quantum computing in simple terms"}
    -    ],
    -    max_tokens=200,
    -    temperature=0.7
    -)
    -
    -print(response.choices[0].message.content)
    +
    from openai import OpenAI
    +
    +# Point the client to your Llamactl server
    +client = OpenAI(
    +    base_url="http://localhost:8080/v1",
    +    api_key="not-needed"  # Llamactl doesn't require API keys by default
    +)
    +
    +# Create a chat completion
    +response = client.chat.completions.create(
    +    model="my-model",  # Use the name of your instance
    +    messages=[
    +        {"role": "user", "content": "Explain quantum computing in simple terms"}
    +    ],
    +    max_tokens=200,
    +    temperature=0.7
    +)
    +
    +print(response.choices[0].message.content)
     

    List Available Models

    Get a list of running instances (models) in OpenAI-compatible format:

    -
    curl http://localhost:8080/v1/models
    +
    curl http://localhost:8080/v1/models
     

    Next Steps

      @@ -1020,7 +1049,7 @@ - September 21, 2025 + September 24, 2025 diff --git a/dev/index.html b/dev/index.html index 08f3ee7..3463a9e 100644 --- a/dev/index.html +++ b/dev/index.html @@ -839,6 +839,7 @@
      • OpenAI API Compatible: Drop-in replacement - route requests by instance name
      • Multi-Backend Support: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
      • +
      • Docker Support: Run backends in containers

      🌐 User-Friendly Interface

        diff --git a/dev/search/search_index.json b/dev/search/search_index.json index 3a6b55a..c9e67a9 100644 --- a/dev/search/search_index.json +++ b/dev/search/search_index.json @@ -1 +1 @@ -{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Llamactl Documentation","text":"

        Welcome to the Llamactl documentation!

        "},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"

        Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.

        "},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"
        • Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality)
        • On-Demand Instance Start: Automatically launch instances upon receiving API requests
        • State Persistence: Ensure instances remain intact across server restarts
        "},{"location":"#universal-compatibility","title":"\ud83d\udd17 Universal Compatibility","text":"
        • OpenAI API Compatible: Drop-in replacement - route requests by instance name
        • Multi-Backend Support: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
        "},{"location":"#user-friendly-interface","title":"\ud83c\udf10 User-Friendly Interface","text":"
        • Web Dashboard: Modern React UI for visual management (unlike CLI-only tools)
        • API Key Authentication: Separate keys for management vs inference access
        "},{"location":"#smart-operations","title":"\u26a1 Smart Operations","text":"
        • Instance Monitoring: Health checks, auto-restart, log management
        • Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits
        "},{"location":"#quick-links","title":"Quick Links","text":"
        • Installation Guide - Get Llamactl up and running
        • Configuration Guide - Detailed configuration options
        • Quick Start - Your first steps with Llamactl
        • Managing Instances - Instance lifecycle management
        • API Reference - Complete API documentation
        "},{"location":"#getting-help","title":"Getting Help","text":"

        If you need help or have questions:

        • Check the Troubleshooting guide
        • Visit the GitHub repository
        • Review the Configuration Guide for advanced settings
        "},{"location":"#license","title":"License","text":"

        MIT License - see the LICENSE file.

        "},{"location":"getting-started/configuration/","title":"Configuration","text":"

        llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:

        Defaults < Configuration file < Environment variables\n

        llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.

        "},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"

        Here's the default configuration with all available options:

        server:\n  host: \"0.0.0.0\"                # Server host to bind to\n  port: 8080                     # Server port to bind to\n  allowed_origins: [\"*\"]         # Allowed CORS origins (default: all)\n  enable_swagger: false          # Enable Swagger UI for API docs\n\nbackends:\n  llama_executable: llama-server # Path to llama-server executable\n  mlx_lm_executable: mlx_lm.server # Path to mlx_lm.server executable\n  vllm_executable: vllm # Path to vllm executable\n\ninstances:\n  port_range: [8000, 9000]       # Port range for instances\n  data_dir: ~/.local/share/llamactl         # Data directory (platform-specific, see below)\n  configs_dir: ~/.local/share/llamactl/instances  # Instance configs directory\n  logs_dir: ~/.local/share/llamactl/logs    # Logs directory\n  auto_create_dirs: true         # Auto-create data/config/logs dirs if missing\n  max_instances: -1              # Max instances (-1 = unlimited)\n  max_running_instances: -1      # Max running instances (-1 = unlimited)\n  enable_lru_eviction: true      # Enable LRU eviction for idle instances\n  default_auto_restart: true     # Auto-restart new instances by default\n  default_max_restarts: 3        # Max restarts for new instances\n  default_restart_delay: 5       # Restart delay (seconds) for new instances\n  default_on_demand_start: true  # Default on-demand start setting\n  on_demand_start_timeout: 120   # Default on-demand start timeout in seconds\n  timeout_check_interval: 5      # Idle instance timeout check in minutes\n\nauth:\n  require_inference_auth: true   # Require auth for inference endpoints\n  inference_keys: []             # Keys for inference endpoints\n  require_management_auth: true  # Require auth for management endpoints\n  management_keys: []            # Keys for management endpoints\n
        "},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"

        Configuration files are searched in the following locations (in order of precedence):

        Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml

        macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml

        Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml

        You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.

        "},{"location":"getting-started/configuration/#configuration-options","title":"Configuration Options","text":""},{"location":"getting-started/configuration/#server-configuration","title":"Server Configuration","text":"
        server:\n  host: \"0.0.0.0\"         # Server host to bind to (default: \"0.0.0.0\")\n  port: 8080              # Server port to bind to (default: 8080)\n  allowed_origins: [\"*\"]  # CORS allowed origins (default: [\"*\"])\n  enable_swagger: false   # Enable Swagger UI (default: false)\n

        Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)

        "},{"location":"getting-started/configuration/#backend-configuration","title":"Backend Configuration","text":"
        backends:\n  llama_executable: \"llama-server\"     # Path to llama-server executable (default: \"llama-server\")\n  mlx_lm_executable: \"mlx_lm.server\"   # Path to mlx_lm.server executable (default: \"mlx_lm.server\")\n  vllm_executable: \"vllm\"              # Path to vllm executable (default: \"vllm\")\n

        Environment Variables: - LLAMACTL_LLAMA_EXECUTABLE - Path to llama-server executable - LLAMACTL_MLX_LM_EXECUTABLE - Path to mlx_lm.server executable - LLAMACTL_VLLM_EXECUTABLE - Path to vllm executable

        "},{"location":"getting-started/configuration/#instance-configuration","title":"Instance Configuration","text":"
        instances:\n  port_range: [8000, 9000]                          # Port range for instances (default: [8000, 9000])\n  data_dir: \"~/.local/share/llamactl\"               # Directory for all llamactl data (default varies by OS)\n  configs_dir: \"~/.local/share/llamactl/instances\"  # Directory for instance configs (default: data_dir/instances)\n  logs_dir: \"~/.local/share/llamactl/logs\"          # Directory for instance logs (default: data_dir/logs)\n  auto_create_dirs: true                            # Automatically create data/config/logs directories (default: true)\n  max_instances: -1                                 # Maximum instances (-1 = unlimited)\n  max_running_instances: -1                         # Maximum running instances (-1 = unlimited)\n  enable_lru_eviction: true                         # Enable LRU eviction for idle instances\n  default_auto_restart: true                        # Default auto-restart setting\n  default_max_restarts: 3                           # Default maximum restart attempts\n  default_restart_delay: 5                          # Default restart delay in seconds\n  default_on_demand_start: true                     # Default on-demand start setting\n  on_demand_start_timeout: 120                      # Default on-demand start timeout in seconds\n  timeout_check_interval: 5                         # Default instance timeout check interval in minutes\n

        Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes

        "},{"location":"getting-started/configuration/#authentication-configuration","title":"Authentication Configuration","text":"
        auth:\n  require_inference_auth: true           # Require API key for OpenAI endpoints (default: true)\n  inference_keys: []                     # List of valid inference API keys\n  require_management_auth: true          # Require API key for management endpoints (default: true)\n  management_keys: []                    # List of valid management API keys\n

        Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys

        "},{"location":"getting-started/configuration/#command-line-options","title":"Command Line Options","text":"

        View all available command line options:

        llamactl --help\n

        You can also override configuration using command line flags when starting llamactl.

        "},{"location":"getting-started/installation/","title":"Installation","text":"

        This guide will walk you through installing Llamactl on your system.

        "},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"

        llamactl supports multiple backends. Install at least one:

        For llama.cpp backend (all platforms):

        You need llama-server from llama.cpp installed:

        # Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n

        Or build from source - see llama.cpp docs

        For MLX backend (macOS only):

        MLX provides optimized inference on Apple Silicon. Install MLX-LM:

        # Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n

        Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)

        For vLLM backend:

        vLLM provides high-throughput distributed serving for LLMs. Install vLLM:

        # Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n
        "},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"

        Download the latest release from the GitHub releases page:

        # Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n
        "},{"location":"getting-started/installation/#option-2-build-from-source","title":"Option 2: Build from Source","text":"

        Requirements: - Go 1.24 or later - Node.js 22 or later - Git

        If you prefer to build from source:

        # Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n
        "},{"location":"getting-started/installation/#verification","title":"Verification","text":"

        Verify your installation by checking the version:

        llamactl --version\n
        "},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"

        Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!

        "},{"location":"getting-started/quick-start/","title":"Quick Start","text":"

        This guide will help you get Llamactl up and running in just a few minutes.

        "},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"

        Start the Llamactl server:

        llamactl\n

        By default, Llamactl will start on http://localhost:8080.

        "},{"location":"getting-started/quick-start/#step-2-access-the-web-ui","title":"Step 2: Access the Web UI","text":"

        Open your web browser and navigate to:

        http://localhost:8080\n

        Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.

        You should see the Llamactl web interface.

        "},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"
        1. Click the \"Add Instance\" button
        2. Fill in the instance configuration:
        3. Name: Give your instance a descriptive name
        4. Backend Type: Choose from llama.cpp, MLX, or vLLM
        5. Model: Model path or identifier for your chosen backend
        6. Additional Options: Backend-specific parameters

        7. Click \"Create Instance\"

        "},{"location":"getting-started/quick-start/#step-4-start-your-instance","title":"Step 4: Start Your Instance","text":"

        Once created, you can:

        • Start the instance by clicking the start button
        • Monitor its status in real-time
        • View logs by clicking the logs button
        • Stop the instance when needed
        "},{"location":"getting-started/quick-start/#example-configurations","title":"Example Configurations","text":"

        Here are basic example configurations for each backend:

        llama.cpp backend:

        {\n  \"name\": \"llama2-7b\",\n  \"backend_type\": \"llama_cpp\",\n  \"backend_options\": {\n    \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n    \"threads\": 4,\n    \"ctx_size\": 2048,\n    \"gpu_layers\": 32\n  }\n}\n

        MLX backend (macOS only):

        {\n  \"name\": \"mistral-mlx\",\n  \"backend_type\": \"mlx_lm\",\n  \"backend_options\": {\n    \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n    \"temp\": 0.7,\n    \"max_tokens\": 2048\n  }\n}\n

        vLLM backend:

        {\n  \"name\": \"dialogpt-vllm\",\n  \"backend_type\": \"vllm\",\n  \"backend_options\": {\n    \"model\": \"microsoft/DialoGPT-medium\",\n    \"tensor_parallel_size\": 2,\n    \"gpu_memory_utilization\": 0.9\n  }\n}\n

        "},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"

        You can also manage instances via the REST API:

        # List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\"\n    }\n  }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n
        "},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"

        Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.

        "},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"

        Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:

        curl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\n        \"role\": \"user\",\n        \"content\": \"Hello! Can you help me write a Python function?\"\n      }\n    ],\n    \"max_tokens\": 150,\n    \"temperature\": 0.7\n  }'\n
        "},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"

        You can also use the official OpenAI Python client:

        from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n    base_url=\"http://localhost:8080/v1\",\n    api_key=\"not-needed\"  # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n    model=\"my-model\",  # Use the name of your instance\n    messages=[\n        {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n    ],\n    max_tokens=200,\n    temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n
        "},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"

        Get a list of running instances (models) in OpenAI-compatible format:

        curl http://localhost:8080/v1/models\n
        "},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"
        • Manage instances Managing Instances
        • Explore the API Reference
        • Configure advanced settings in the Configuration guide
        "},{"location":"user-guide/api-reference/","title":"API Reference","text":"

        Complete reference for the Llamactl REST API.

        "},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"

        All API endpoints are relative to the base URL:

        http://localhost:8080/api/v1\n
        "},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"

        Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:

        curl -H \"Authorization: Bearer <your-api-key>\" \\\n  http://localhost:8080/api/v1/instances\n

        The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints

        "},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"

        Get the version information of the llamactl server.

        GET /api/v1/version\n

        Response:

        Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n

        "},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"

        Get help text for the llama-server command.

        GET /api/v1/server/help\n

        Response: Plain text help output from llama-server --help

        "},{"location":"user-guide/api-reference/#get-llama-server-version","title":"Get Llama Server Version","text":"

        Get version information of the llama-server binary.

        GET /api/v1/server/version\n

        Response: Plain text version output from llama-server --version

        "},{"location":"user-guide/api-reference/#list-available-devices","title":"List Available Devices","text":"

        List available devices for llama-server.

        GET /api/v1/server/devices\n

        Response: Plain text device list from llama-server --list-devices

        "},{"location":"user-guide/api-reference/#instances","title":"Instances","text":""},{"location":"user-guide/api-reference/#list-all-instances","title":"List All Instances","text":"

        Get a list of all instances.

        GET /api/v1/instances\n

        Response:

        [\n  {\n    \"name\": \"llama2-7b\",\n    \"status\": \"running\",\n    \"created\": 1705312200\n  }\n]\n

        "},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"

        Get detailed information about a specific instance.

        GET /api/v1/instances/{name}\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"

        Create and start a new instance.

        POST /api/v1/instances/{name}\n

        Request Body: JSON object with instance configuration. See Managing Instances for available configuration options.

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"

        Update an existing instance configuration. See Managing Instances for available configuration options.

        PUT /api/v1/instances/{name}\n

        Request Body: JSON object with configuration fields to update.

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"

        Stop and remove an instance.

        DELETE /api/v1/instances/{name}\n

        Response: 204 No Content

        "},{"location":"user-guide/api-reference/#instance-operations","title":"Instance Operations","text":""},{"location":"user-guide/api-reference/#start-instance","title":"Start Instance","text":"

        Start a stopped instance.

        POST /api/v1/instances/{name}/start\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance

        "},{"location":"user-guide/api-reference/#stop-instance","title":"Stop Instance","text":"

        Stop a running instance.

        POST /api/v1/instances/{name}/stop\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"stopped\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"

        Restart an instance (stop then start).

        POST /api/v1/instances/{name}/restart\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"

        Retrieve instance logs.

        GET /api/v1/instances/{name}/logs\n

        Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)

        Response: Plain text log output

        Example:

        curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n

        "},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"

        Proxy HTTP requests directly to the llama-server instance.

        GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n

        This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.

        Example - Check Instance Health:

        curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/proxy/health\n

        This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.

        Error Responses: - 503 Service Unavailable: Instance is not running

        "},{"location":"user-guide/api-reference/#openai-compatible-api","title":"OpenAI-Compatible API","text":"

        Llamactl provides OpenAI-compatible endpoints for inference operations.

        "},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"

        List all instances in OpenAI-compatible format.

        GET /v1/models\n

        Response:

        {\n  \"object\": \"list\",\n  \"data\": [\n    {\n      \"id\": \"llama2-7b\",\n      \"object\": \"model\",\n      \"created\": 1705312200,\n      \"owned_by\": \"llamactl\"\n    }\n  ]\n}\n

        "},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"

        All OpenAI-compatible inference endpoints are available:

        POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n

        Request Body: Standard OpenAI format with model field specifying the instance name

        Example:

        {\n  \"model\": \"llama2-7b\",\n  \"messages\": [\n    {\n      \"role\": \"user\",\n      \"content\": \"Hello, how are you?\"\n    }\n  ]\n}\n

        The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.

        Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit

        "},{"location":"user-guide/api-reference/#instance-status-values","title":"Instance Status Values","text":"

        Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed

        "},{"location":"user-guide/api-reference/#error-responses","title":"Error Responses","text":"

        All endpoints may return error responses in the following format:

        {\n  \"error\": \"Error message description\"\n}\n
        "},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"
        • 200: Success
        • 201: Created
        • 204: No Content (successful deletion)
        • 400: Bad Request (invalid parameters or request body)
        • 401: Unauthorized (missing or invalid API key)
        • 403: Forbidden (insufficient permissions)
        • 404: Not Found (instance not found)
        • 409: Conflict (instance already exists, max instances reached)
        • 500: Internal Server Error
        • 503: Service Unavailable (instance not running)
        "},{"location":"user-guide/api-reference/#examples","title":"Examples","text":""},{"location":"user-guide/api-reference/#complete-instance-lifecycle","title":"Complete Instance Lifecycle","text":"
        # Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"model\": \"/models/llama-2-7b.gguf\"\n  }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-inference-api-key\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\"role\": \"user\", \"content\": \"Hello!\"}\n    ],\n    \"max_tokens\": 100\n  }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n
        "},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"

        You can also directly proxy requests to the llama-server instance:

        # Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"prompt\": \"Hello, world!\",\n    \"n_predict\": 50\n  }'\n
        "},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"

        Llamactl provides endpoints to parse command strings from different backends into instance configuration options.

        "},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"

        Parse a llama-server command string into instance options.

        POST /api/v1/backends/llama-cpp/parse-command\n

        Request Body:

        {\n  \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n

        Response:

        {\n  \"backend_type\": \"llama_cpp\",\n  \"llama_server_options\": {\n    \"model\": \"/path/to/model.gguf\",\n    \"ctx_size\": 2048,\n    \"port\": 8080\n  }\n}\n

        "},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"

        Parse an MLX-LM server command string into instance options.

        POST /api/v1/backends/mlx/parse-command\n

        Request Body:

        {\n  \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n

        Response:

        {\n  \"backend_type\": \"mlx_lm\",\n  \"mlx_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

        "},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"

        Parse a vLLM serve command string into instance options.

        POST /api/v1/backends/vllm/parse-command\n

        Request Body:

        {\n  \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n

        Response:

        {\n  \"backend_type\": \"vllm\",\n  \"vllm_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

        Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error

        "},{"location":"user-guide/api-reference/#auto-generated-documentation","title":"Auto-Generated Documentation","text":"

        The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:

        1. Install the swag tool: go install github.com/swaggo/swag/cmd/swag@latest
        2. Generate docs: swag init -g cmd/server/main.go -o apidocs
        "},{"location":"user-guide/api-reference/#swagger-documentation","title":"Swagger Documentation","text":"

        If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:

        http://localhost:8080/swagger/\n

        This provides a complete interactive interface for testing all API endpoints.

        "},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"

        Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.

        "},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"

        Llamactl provides two ways to manage instances:

        • Web UI: Accessible at http://localhost:8080 with an intuitive dashboard
        • REST API: Programmatic access for automation and integration

        "},{"location":"user-guide/managing-instances/#authentication","title":"Authentication","text":"

        If authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session

        "},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"
        • Switch between light and dark themes
        • Setting is remembered across sessions
        "},{"location":"user-guide/managing-instances/#instance-cards","title":"Instance Cards","text":"

        Each instance is displayed as a card showing:

        • Instance name
        • Health status badge (unknown, ready, error, failed)
        • Action buttons (start, stop, edit, logs, delete)
        "},{"location":"user-guide/managing-instances/#create-instance","title":"Create Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui","title":"Via Web UI","text":"
        1. Click the \"Create Instance\" button on the dashboard
        2. Enter a unique Name for your instance (only required field)
        3. Choose Backend Type:
          • llama.cpp: For GGUF models using llama-server
          • MLX: For MLX-optimized models (macOS only)
          • vLLM: For distributed serving and high-throughput inference
        4. Configure model source:
          • For llama.cpp: GGUF model path or HuggingFace repo
          • For MLX: MLX model path or identifier (e.g., mlx-community/Mistral-7B-Instruct-v0.3-4bit)
          • For vLLM: HuggingFace model identifier (e.g., microsoft/DialoGPT-medium)
        5. Configure optional instance management settings:
          • Auto Restart: Automatically restart instance on failure
          • Max Restarts: Maximum number of restart attempts
          • Restart Delay: Delay in seconds between restart attempts
          • On Demand Start: Start instance when receiving a request to the OpenAI compatible endpoint
          • Idle Timeout: Minutes before stopping idle instance (set to 0 to disable)
        6. Configure backend-specific options:
          • llama.cpp: Threads, context size, GPU layers, port, etc.
          • MLX: Temperature, top-p, adapter path, Python environment, etc.
          • vLLM: Tensor parallel size, GPU memory utilization, quantization, etc.
        7. Click \"Create\" to save the instance
        "},{"location":"user-guide/managing-instances/#via-api","title":"Via API","text":"
        # Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\",\n      \"threads\": 8,\n      \"ctx_size\": 4096,\n      \"gpu_layers\": 32\n    }\n  }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"mlx_lm\",\n    \"backend_options\": {\n      \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n      \"temp\": 0.7,\n      \"top_p\": 0.9,\n      \"max_tokens\": 2048\n    },\n    \"auto_restart\": true,\n    \"max_restarts\": 3\n  }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"vllm\",\n    \"backend_options\": {\n      \"model\": \"microsoft/DialoGPT-medium\",\n      \"tensor_parallel_size\": 2,\n      \"gpu_memory_utilization\": 0.9\n    },\n    \"auto_restart\": true,\n    \"on_demand_start\": true\n  }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n      \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n      \"gpu_layers\": 32\n    }\n  }'\n
        "},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"
        1. Click the \"Start\" button on an instance card
        2. Watch the status change to \"Unknown\"
        3. Monitor progress in the logs
        4. Instance status changes to \"Ready\" when ready
        "},{"location":"user-guide/managing-instances/#via-api_1","title":"Via API","text":"
        curl -X POST http://localhost:8080/api/instances/{name}/start\n
        "},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"
        1. Click the \"Stop\" button on an instance card
        2. Instance gracefully shuts down
        "},{"location":"user-guide/managing-instances/#via-api_2","title":"Via API","text":"
        curl -X POST http://localhost:8080/api/instances/{name}/stop\n
        "},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"
        1. Click the \"Edit\" button on an instance card
        2. Modify settings in the configuration dialog
        3. Changes require instance restart to take effect
        4. Click \"Update & Restart\" to apply changes
        "},{"location":"user-guide/managing-instances/#via-api_3","title":"Via API","text":"

        Modify instance settings:

        curl -X PUT http://localhost:8080/api/instances/{name} \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_options\": {\n      \"threads\": 8,\n      \"context_size\": 4096\n    }\n  }'\n

        Note

        Configuration changes require restarting the instance to take effect.

        "},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"
        1. Click the \"Logs\" button on any instance card
        2. Real-time log viewer opens
        "},{"location":"user-guide/managing-instances/#via-api_4","title":"Via API","text":"

        Check instance status in real-time:

        # Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n
        "},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"
        1. Click the \"Delete\" button on an instance card
        2. Only stopped instances can be deleted
        3. Confirm deletion in the dialog
        "},{"location":"user-guide/managing-instances/#via-api_5","title":"Via API","text":"
        curl -X DELETE http://localhost:8080/api/instances/{name}\n
        "},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"

        Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).

        # Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n

        All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs

        "},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"
        1. The health status badge is displayed on each instance card
        "},{"location":"user-guide/managing-instances/#via-api_6","title":"Via API","text":"

        Check the health status of your instances:

        curl http://localhost:8080/api/instances/{name}/proxy/health\n
        "},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"

        Issues specific to Llamactl deployment and operation.

        "},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"

        Problem: Invalid configuration preventing startup

        Solutions: 1. Use minimal configuration:

        server:\n  host: \"0.0.0.0\"\n  port: 8080\ninstances:\n  port_range: [8000, 9000]\n

        1. Check data directory permissions:
          # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\n
        "},{"location":"user-guide/troubleshooting/#instance-management-issues","title":"Instance Management Issues","text":""},{"location":"user-guide/troubleshooting/#model-loading-failures","title":"Model Loading Failures","text":"

        Problem: Instance fails to start with model loading errors

        Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files

        "},{"location":"user-guide/troubleshooting/#memory-issues","title":"Memory Issues","text":"

        Problem: Out of memory errors or system becomes unresponsive

        Solutions: 1. Reduce context size:

        {\n  \"n_ctx\": 1024\n}\n

        1. Use quantized models:
        2. Try Q4_K_M instead of higher precision models
        3. Use smaller model variants (7B instead of 13B)
        "},{"location":"user-guide/troubleshooting/#gpu-configuration","title":"GPU Configuration","text":"

        Problem: GPU not being used effectively

        Solutions: 1. Configure GPU layers:

        {\n  \"n_gpu_layers\": 35\n}\n

        "},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"

        Problem: Complex model loading, performance, or compatibility issues

        Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:

        Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions

        Testing directly with llama-server:

        # Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n

        This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.

        "},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"

        Problem: Web UI shows CORS errors in browser console

        Solutions: 1. Configure allowed origins:

        server:\n  allowed_origins:\n    - \"http://localhost:3000\"\n    - \"https://yourdomain.com\"\n

        "},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"

        Problem: API requests failing with authentication errors

        Solutions: 1. Disable authentication temporarily:

        auth:\n  require_management_auth: false\n  require_inference_auth: false\n

        1. Configure API keys:

          auth:\n  management_keys:\n    - \"your-management-key\"\n  inference_keys:\n    - \"your-inference-key\"\n

        2. Use correct Authorization header:

          curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances\n

        "},{"location":"user-guide/troubleshooting/#debugging-and-logs","title":"Debugging and Logs","text":""},{"location":"user-guide/troubleshooting/#viewing-instance-logs","title":"Viewing Instance Logs","text":"
        # Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n
        "},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"
        export LLAMACTL_LOG_LEVEL=debug\nllamactl\n
        "},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"

        When reporting issues, include:

        1. System information:

          llamactl --version\n

        2. Configuration file (remove sensitive keys)

        3. Relevant log output

        4. Steps to reproduce the issue

        "}]} \ No newline at end of file +{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Llamactl Documentation","text":"

        Welcome to the Llamactl documentation!

        "},{"location":"#what-is-llamactl","title":"What is Llamactl?","text":"

        Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.

        "},{"location":"#features","title":"Features","text":""},{"location":"#easy-model-management","title":"\ud83d\ude80 Easy Model Management","text":"
        • Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality)
        • On-Demand Instance Start: Automatically launch instances upon receiving API requests
        • State Persistence: Ensure instances remain intact across server restarts
        "},{"location":"#universal-compatibility","title":"\ud83d\udd17 Universal Compatibility","text":"
        • OpenAI API Compatible: Drop-in replacement - route requests by instance name
        • Multi-Backend Support: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
        • Docker Support: Run backends in containers
        "},{"location":"#user-friendly-interface","title":"\ud83c\udf10 User-Friendly Interface","text":"
        • Web Dashboard: Modern React UI for visual management (unlike CLI-only tools)
        • API Key Authentication: Separate keys for management vs inference access
        "},{"location":"#smart-operations","title":"\u26a1 Smart Operations","text":"
        • Instance Monitoring: Health checks, auto-restart, log management
        • Smart Resource Management: Idle timeout, LRU eviction, and configurable instance limits
        "},{"location":"#quick-links","title":"Quick Links","text":"
        • Installation Guide - Get Llamactl up and running
        • Configuration Guide - Detailed configuration options
        • Quick Start - Your first steps with Llamactl
        • Managing Instances - Instance lifecycle management
        • API Reference - Complete API documentation
        "},{"location":"#getting-help","title":"Getting Help","text":"

        If you need help or have questions:

        • Check the Troubleshooting guide
        • Visit the GitHub repository
        • Review the Configuration Guide for advanced settings
        "},{"location":"#license","title":"License","text":"

        MIT License - see the LICENSE file.

        "},{"location":"getting-started/configuration/","title":"Configuration","text":"

        llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence:

        Defaults < Configuration file < Environment variables\n

        llamactl works out of the box with sensible defaults, but you can customize the behavior to suit your needs.

        "},{"location":"getting-started/configuration/#default-configuration","title":"Default Configuration","text":"

        Here's the default configuration with all available options:

        server:\n  host: \"0.0.0.0\"                # Server host to bind to\n  port: 8080                     # Server port to bind to\n  allowed_origins: [\"*\"]         # Allowed CORS origins (default: all)\n  enable_swagger: false          # Enable Swagger UI for API docs\n\nbackends:\n  llama-cpp:\n    command: \"llama-server\"\n    args: []\n    docker:\n      enabled: false\n      image: \"ghcr.io/ggml-org/llama.cpp:server\"\n      args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n      environment: {}\n\n  vllm:\n    command: \"vllm\"\n    args: [\"serve\"]\n    docker:\n      enabled: false\n      image: \"vllm/vllm-openai:latest\"\n      args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n      environment: {}\n\n  mlx:\n    command: \"mlx_lm.server\"\n    args: []\n\ninstances:\n  port_range: [8000, 9000]       # Port range for instances\n  data_dir: ~/.local/share/llamactl         # Data directory (platform-specific, see below)\n  configs_dir: ~/.local/share/llamactl/instances  # Instance configs directory\n  logs_dir: ~/.local/share/llamactl/logs    # Logs directory\n  auto_create_dirs: true         # Auto-create data/config/logs dirs if missing\n  max_instances: -1              # Max instances (-1 = unlimited)\n  max_running_instances: -1      # Max running instances (-1 = unlimited)\n  enable_lru_eviction: true      # Enable LRU eviction for idle instances\n  default_auto_restart: true     # Auto-restart new instances by default\n  default_max_restarts: 3        # Max restarts for new instances\n  default_restart_delay: 5       # Restart delay (seconds) for new instances\n  default_on_demand_start: true  # Default on-demand start setting\n  on_demand_start_timeout: 120   # Default on-demand start timeout in seconds\n  timeout_check_interval: 5      # Idle instance timeout check in minutes\n\nauth:\n  require_inference_auth: true   # Require auth for inference endpoints\n  inference_keys: []             # Keys for inference endpoints\n  require_management_auth: true  # Require auth for management endpoints\n  management_keys: []            # Keys for management endpoints\n
        "},{"location":"getting-started/configuration/#configuration-files","title":"Configuration Files","text":""},{"location":"getting-started/configuration/#configuration-file-locations","title":"Configuration File Locations","text":"

        Configuration files are searched in the following locations (in order of precedence):

        Linux: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/.config/llamactl/config.yaml - /etc/llamactl/config.yaml

        macOS: - ./llamactl.yaml or ./config.yaml (current directory) - $HOME/Library/Application Support/llamactl/config.yaml - /Library/Application Support/llamactl/config.yaml

        Windows: - ./llamactl.yaml or ./config.yaml (current directory) - %APPDATA%\\llamactl\\config.yaml - %USERPROFILE%\\llamactl\\config.yaml - %PROGRAMDATA%\\llamactl\\config.yaml

        You can specify the path to config file with LLAMACTL_CONFIG_PATH environment variable.

        "},{"location":"getting-started/configuration/#configuration-options","title":"Configuration Options","text":""},{"location":"getting-started/configuration/#server-configuration","title":"Server Configuration","text":"
        server:\n  host: \"0.0.0.0\"         # Server host to bind to (default: \"0.0.0.0\")\n  port: 8080              # Server port to bind to (default: 8080)\n  allowed_origins: [\"*\"]  # CORS allowed origins (default: [\"*\"])\n  enable_swagger: false   # Enable Swagger UI (default: false)\n

        Environment Variables: - LLAMACTL_HOST - Server host - LLAMACTL_PORT - Server port - LLAMACTL_ALLOWED_ORIGINS - Comma-separated CORS origins - LLAMACTL_ENABLE_SWAGGER - Enable Swagger UI (true/false)

        "},{"location":"getting-started/configuration/#backend-configuration","title":"Backend Configuration","text":"
        backends:\n  llama-cpp:\n    command: \"llama-server\"\n    args: []\n    docker:\n      enabled: false                   # Enable Docker runtime (default: false)\n      image: \"ghcr.io/ggml-org/llama.cpp:server\"\n      args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\"]\n      environment: {}\n\n  vllm:\n    command: \"vllm\"\n    args: [\"serve\"]\n    docker:\n      enabled: false\n      image: \"vllm/vllm-openai:latest\"\n      args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n      environment: {}\n\n  mlx:\n    command: \"mlx_lm.server\"\n    args: []\n    # MLX does not support Docker\n

        Backend Configuration Fields: - command: Executable name/path for the backend - args: Default arguments prepended to all instances - docker: Docker-specific configuration (optional) - enabled: Boolean flag to enable Docker runtime - image: Docker image to use - args: Additional arguments passed to docker run - environment: Environment variables for the container (optional)

        "},{"location":"getting-started/configuration/#instance-configuration","title":"Instance Configuration","text":"
        instances:\n  port_range: [8000, 9000]                          # Port range for instances (default: [8000, 9000])\n  data_dir: \"~/.local/share/llamactl\"               # Directory for all llamactl data (default varies by OS)\n  configs_dir: \"~/.local/share/llamactl/instances\"  # Directory for instance configs (default: data_dir/instances)\n  logs_dir: \"~/.local/share/llamactl/logs\"          # Directory for instance logs (default: data_dir/logs)\n  auto_create_dirs: true                            # Automatically create data/config/logs directories (default: true)\n  max_instances: -1                                 # Maximum instances (-1 = unlimited)\n  max_running_instances: -1                         # Maximum running instances (-1 = unlimited)\n  enable_lru_eviction: true                         # Enable LRU eviction for idle instances\n  default_auto_restart: true                        # Default auto-restart setting\n  default_max_restarts: 3                           # Default maximum restart attempts\n  default_restart_delay: 5                          # Default restart delay in seconds\n  default_on_demand_start: true                     # Default on-demand start setting\n  on_demand_start_timeout: 120                      # Default on-demand start timeout in seconds\n  timeout_check_interval: 5                         # Default instance timeout check interval in minutes\n

        Environment Variables: - LLAMACTL_INSTANCE_PORT_RANGE - Port range (format: \"8000-9000\" or \"8000,9000\") - LLAMACTL_DATA_DIRECTORY - Data directory path - LLAMACTL_INSTANCES_DIR - Instance configs directory path - LLAMACTL_LOGS_DIR - Log directory path - LLAMACTL_AUTO_CREATE_DATA_DIR - Auto-create data/config/logs directories (true/false) - LLAMACTL_MAX_INSTANCES - Maximum number of instances - LLAMACTL_MAX_RUNNING_INSTANCES - Maximum number of running instances - LLAMACTL_ENABLE_LRU_EVICTION - Enable LRU eviction for idle instances - LLAMACTL_DEFAULT_AUTO_RESTART - Default auto-restart setting (true/false) - LLAMACTL_DEFAULT_MAX_RESTARTS - Default maximum restarts - LLAMACTL_DEFAULT_RESTART_DELAY - Default restart delay in seconds - LLAMACTL_DEFAULT_ON_DEMAND_START - Default on-demand start setting (true/false) - LLAMACTL_ON_DEMAND_START_TIMEOUT - Default on-demand start timeout in seconds - LLAMACTL_TIMEOUT_CHECK_INTERVAL - Default instance timeout check interval in minutes

        "},{"location":"getting-started/configuration/#authentication-configuration","title":"Authentication Configuration","text":"
        auth:\n  require_inference_auth: true           # Require API key for OpenAI endpoints (default: true)\n  inference_keys: []                     # List of valid inference API keys\n  require_management_auth: true          # Require API key for management endpoints (default: true)\n  management_keys: []                    # List of valid management API keys\n

        Environment Variables: - LLAMACTL_REQUIRE_INFERENCE_AUTH - Require auth for OpenAI endpoints (true/false) - LLAMACTL_INFERENCE_KEYS - Comma-separated inference API keys - LLAMACTL_REQUIRE_MANAGEMENT_AUTH - Require auth for management endpoints (true/false) - LLAMACTL_MANAGEMENT_KEYS - Comma-separated management API keys

        "},{"location":"getting-started/configuration/#command-line-options","title":"Command Line Options","text":"

        View all available command line options:

        llamactl --help\n

        You can also override configuration using command line flags when starting llamactl.

        "},{"location":"getting-started/installation/","title":"Installation","text":"

        This guide will walk you through installing Llamactl on your system.

        "},{"location":"getting-started/installation/#prerequisites","title":"Prerequisites","text":""},{"location":"getting-started/installation/#backend-dependencies","title":"Backend Dependencies","text":"

        llamactl supports multiple backends. Install at least one:

        For llama.cpp backend (all platforms):

        You need llama-server from llama.cpp installed:

        # Homebrew (macOS/Linux)\nbrew install llama.cpp\n# Winget (Windows)\nwinget install llama.cpp\n

        Or build from source - see llama.cpp docs

        For MLX backend (macOS only):

        MLX provides optimized inference on Apple Silicon. Install MLX-LM:

        # Install via pip (requires Python 3.8+)\npip install mlx-lm\n\n# Or in a virtual environment (recommended)\npython -m venv mlx-env\nsource mlx-env/bin/activate\npip install mlx-lm\n

        Note: MLX backend is only available on macOS with Apple Silicon (M1, M2, M3, etc.)

        For vLLM backend:

        vLLM provides high-throughput distributed serving for LLMs. Install vLLM:

        # Install via pip (requires Python 3.8+, GPU required)\npip install vllm\n\n# Or in a virtual environment (recommended)\npython -m venv vllm-env\nsource vllm-env/bin/activate\npip install vllm\n\n# For production deployments, consider container-based installation\n
        "},{"location":"getting-started/installation/#installation-methods","title":"Installation Methods","text":""},{"location":"getting-started/installation/#option-1-download-binary-recommended","title":"Option 1: Download Binary (Recommended)","text":"

        Download the latest release from the GitHub releases page:

        # Linux/macOS - Get latest version and download\nLATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '\"tag_name\":' | sed -E 's/.*\"([^\"]+)\".*/\\1/')\ncurl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz\nsudo mv llamactl /usr/local/bin/\n\n# Or download manually from:\n# https://github.com/lordmathis/llamactl/releases/latest\n\n# Windows - Download from releases page\n
        "},{"location":"getting-started/installation/#option-2-build-from-source","title":"Option 2: Build from Source","text":"

        Requirements: - Go 1.24 or later - Node.js 22 or later - Git

        If you prefer to build from source:

        # Clone the repository\ngit clone https://github.com/lordmathis/llamactl.git\ncd llamactl\n\n# Build the web UI\ncd webui && npm ci && npm run build && cd ..\n\n# Build the application\ngo build -o llamactl ./cmd/server\n
        "},{"location":"getting-started/installation/#verification","title":"Verification","text":"

        Verify your installation by checking the version:

        llamactl --version\n
        "},{"location":"getting-started/installation/#next-steps","title":"Next Steps","text":"

        Now that Llamactl is installed, continue to the Quick Start guide to get your first instance running!

        "},{"location":"getting-started/quick-start/","title":"Quick Start","text":"

        This guide will help you get Llamactl up and running in just a few minutes.

        "},{"location":"getting-started/quick-start/#step-1-start-llamactl","title":"Step 1: Start Llamactl","text":"

        Start the Llamactl server:

        llamactl\n

        By default, Llamactl will start on http://localhost:8080.

        "},{"location":"getting-started/quick-start/#step-2-access-the-web-ui","title":"Step 2: Access the Web UI","text":"

        Open your web browser and navigate to:

        http://localhost:8080\n

        Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.

        You should see the Llamactl web interface.

        "},{"location":"getting-started/quick-start/#step-3-create-your-first-instance","title":"Step 3: Create Your First Instance","text":"
        1. Click the \"Add Instance\" button
        2. Fill in the instance configuration:
        3. Name: Give your instance a descriptive name
        4. Backend Type: Choose from llama.cpp, MLX, or vLLM
        5. Model: Model path or identifier for your chosen backend
        6. Additional Options: Backend-specific parameters

        7. Click \"Create Instance\"

        "},{"location":"getting-started/quick-start/#step-4-start-your-instance","title":"Step 4: Start Your Instance","text":"

        Once created, you can:

        • Start the instance by clicking the start button
        • Monitor its status in real-time
        • View logs by clicking the logs button
        • Stop the instance when needed
        "},{"location":"getting-started/quick-start/#example-configurations","title":"Example Configurations","text":"

        Here are basic example configurations for each backend:

        llama.cpp backend:

        {\n  \"name\": \"llama2-7b\",\n  \"backend_type\": \"llama_cpp\",\n  \"backend_options\": {\n    \"model\": \"/path/to/llama-2-7b-chat.gguf\",\n    \"threads\": 4,\n    \"ctx_size\": 2048,\n    \"gpu_layers\": 32\n  }\n}\n

        MLX backend (macOS only):

        {\n  \"name\": \"mistral-mlx\",\n  \"backend_type\": \"mlx_lm\",\n  \"backend_options\": {\n    \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n    \"temp\": 0.7,\n    \"max_tokens\": 2048\n  }\n}\n

        vLLM backend:

        {\n  \"name\": \"dialogpt-vllm\",\n  \"backend_type\": \"vllm\",\n  \"backend_options\": {\n    \"model\": \"microsoft/DialoGPT-medium\",\n    \"tensor_parallel_size\": 2,\n    \"gpu_memory_utilization\": 0.9\n  }\n}\n

        "},{"location":"getting-started/quick-start/#docker-support","title":"Docker Support","text":"

        Llamactl can run backends in Docker containers. To enable Docker for a backend, add a docker section to that backend in your YAML configuration file (e.g. config.yaml) as shown below:

        backends:\n  vllm:\n    command: \"vllm\"\n    args: [\"serve\"]\n    docker:\n      enabled: true\n      image: \"vllm/vllm-openai:latest\"\n      args: [\"run\", \"--rm\", \"--network\", \"host\", \"--gpus\", \"all\", \"--shm-size\", \"1g\"]\n
        "},{"location":"getting-started/quick-start/#using-the-api","title":"Using the API","text":"

        You can also manage instances via the REST API:

        # List all instances\ncurl http://localhost:8080/api/instances\n\n# Create a new llama.cpp instance\ncurl -X POST http://localhost:8080/api/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\"\n    }\n  }'\n\n# Start an instance\ncurl -X POST http://localhost:8080/api/instances/my-model/start\n
        "},{"location":"getting-started/quick-start/#openai-compatible-api","title":"OpenAI Compatible API","text":"

        Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.

        "},{"location":"getting-started/quick-start/#chat-completions","title":"Chat Completions","text":"

        Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:

        curl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\n        \"role\": \"user\",\n        \"content\": \"Hello! Can you help me write a Python function?\"\n      }\n    ],\n    \"max_tokens\": 150,\n    \"temperature\": 0.7\n  }'\n
        "},{"location":"getting-started/quick-start/#using-with-python-openai-client","title":"Using with Python OpenAI Client","text":"

        You can also use the official OpenAI Python client:

        from openai import OpenAI\n\n# Point the client to your Llamactl server\nclient = OpenAI(\n    base_url=\"http://localhost:8080/v1\",\n    api_key=\"not-needed\"  # Llamactl doesn't require API keys by default\n)\n\n# Create a chat completion\nresponse = client.chat.completions.create(\n    model=\"my-model\",  # Use the name of your instance\n    messages=[\n        {\"role\": \"user\", \"content\": \"Explain quantum computing in simple terms\"}\n    ],\n    max_tokens=200,\n    temperature=0.7\n)\n\nprint(response.choices[0].message.content)\n
        "},{"location":"getting-started/quick-start/#list-available-models","title":"List Available Models","text":"

        Get a list of running instances (models) in OpenAI-compatible format:

        curl http://localhost:8080/v1/models\n
        "},{"location":"getting-started/quick-start/#next-steps","title":"Next Steps","text":"
        • Manage instances Managing Instances
        • Explore the API Reference
        • Configure advanced settings in the Configuration guide
        "},{"location":"user-guide/api-reference/","title":"API Reference","text":"

        Complete reference for the Llamactl REST API.

        "},{"location":"user-guide/api-reference/#base-url","title":"Base URL","text":"

        All API endpoints are relative to the base URL:

        http://localhost:8080/api/v1\n
        "},{"location":"user-guide/api-reference/#authentication","title":"Authentication","text":"

        Llamactl supports API key authentication. If authentication is enabled, include the API key in the Authorization header:

        curl -H \"Authorization: Bearer <your-api-key>\" \\\n  http://localhost:8080/api/v1/instances\n

        The server supports two types of API keys: - Management API Keys: Required for instance management operations (CRUD operations on instances) - Inference API Keys: Required for OpenAI-compatible inference endpoints

        "},{"location":"user-guide/api-reference/#system-endpoints","title":"System Endpoints","text":""},{"location":"user-guide/api-reference/#get-llamactl-version","title":"Get Llamactl Version","text":"

        Get the version information of the llamactl server.

        GET /api/v1/version\n

        Response:

        Version: 1.0.0\nCommit: abc123\nBuild Time: 2024-01-15T10:00:00Z\n

        "},{"location":"user-guide/api-reference/#get-llama-server-help","title":"Get Llama Server Help","text":"

        Get help text for the llama-server command.

        GET /api/v1/server/help\n

        Response: Plain text help output from llama-server --help

        "},{"location":"user-guide/api-reference/#get-llama-server-version","title":"Get Llama Server Version","text":"

        Get version information of the llama-server binary.

        GET /api/v1/server/version\n

        Response: Plain text version output from llama-server --version

        "},{"location":"user-guide/api-reference/#list-available-devices","title":"List Available Devices","text":"

        List available devices for llama-server.

        GET /api/v1/server/devices\n

        Response: Plain text device list from llama-server --list-devices

        "},{"location":"user-guide/api-reference/#instances","title":"Instances","text":""},{"location":"user-guide/api-reference/#list-all-instances","title":"List All Instances","text":"

        Get a list of all instances.

        GET /api/v1/instances\n

        Response:

        [\n  {\n    \"name\": \"llama2-7b\",\n    \"status\": \"running\",\n    \"created\": 1705312200\n  }\n]\n

        "},{"location":"user-guide/api-reference/#get-instance-details","title":"Get Instance Details","text":"

        Get detailed information about a specific instance.

        GET /api/v1/instances/{name}\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#create-instance","title":"Create Instance","text":"

        Create and start a new instance.

        POST /api/v1/instances/{name}\n

        Request Body: JSON object with instance configuration. See Managing Instances for available configuration options.

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#update-instance","title":"Update Instance","text":"

        Update an existing instance configuration. See Managing Instances for available configuration options.

        PUT /api/v1/instances/{name}\n

        Request Body: JSON object with configuration fields to update.

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#delete-instance","title":"Delete Instance","text":"

        Stop and remove an instance.

        DELETE /api/v1/instances/{name}\n

        Response: 204 No Content

        "},{"location":"user-guide/api-reference/#instance-operations","title":"Instance Operations","text":""},{"location":"user-guide/api-reference/#start-instance","title":"Start Instance","text":"

        Start a stopped instance.

        POST /api/v1/instances/{name}/start\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        Error Responses: - 409 Conflict: Maximum number of running instances reached - 500 Internal Server Error: Failed to start instance

        "},{"location":"user-guide/api-reference/#stop-instance","title":"Stop Instance","text":"

        Stop a running instance.

        POST /api/v1/instances/{name}/stop\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"stopped\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#restart-instance","title":"Restart Instance","text":"

        Restart an instance (stop then start).

        POST /api/v1/instances/{name}/restart\n

        Response:

        {\n  \"name\": \"llama2-7b\",\n  \"status\": \"running\",\n  \"created\": 1705312200\n}\n

        "},{"location":"user-guide/api-reference/#get-instance-logs","title":"Get Instance Logs","text":"

        Retrieve instance logs.

        GET /api/v1/instances/{name}/logs\n

        Query Parameters: - lines: Number of lines to return (default: all lines, use -1 for all)

        Response: Plain text log output

        Example:

        curl \"http://localhost:8080/api/v1/instances/my-instance/logs?lines=100\"\n

        "},{"location":"user-guide/api-reference/#proxy-to-instance","title":"Proxy to Instance","text":"

        Proxy HTTP requests directly to the llama-server instance.

        GET /api/v1/instances/{name}/proxy/*\nPOST /api/v1/instances/{name}/proxy/*\n

        This endpoint forwards all requests to the underlying llama-server instance running on its configured port. The proxy strips the /api/v1/instances/{name}/proxy prefix and forwards the remaining path to the instance.

        Example - Check Instance Health:

        curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/proxy/health\n

        This forwards the request to http://instance-host:instance-port/health on the actual llama-server instance.

        Error Responses: - 503 Service Unavailable: Instance is not running

        "},{"location":"user-guide/api-reference/#openai-compatible-api","title":"OpenAI-Compatible API","text":"

        Llamactl provides OpenAI-compatible endpoints for inference operations.

        "},{"location":"user-guide/api-reference/#list-models","title":"List Models","text":"

        List all instances in OpenAI-compatible format.

        GET /v1/models\n

        Response:

        {\n  \"object\": \"list\",\n  \"data\": [\n    {\n      \"id\": \"llama2-7b\",\n      \"object\": \"model\",\n      \"created\": 1705312200,\n      \"owned_by\": \"llamactl\"\n    }\n  ]\n}\n

        "},{"location":"user-guide/api-reference/#chat-completions-completions-embeddings","title":"Chat Completions, Completions, Embeddings","text":"

        All OpenAI-compatible inference endpoints are available:

        POST /v1/chat/completions\nPOST /v1/completions\nPOST /v1/embeddings\nPOST /v1/rerank\nPOST /v1/reranking\n

        Request Body: Standard OpenAI format with model field specifying the instance name

        Example:

        {\n  \"model\": \"llama2-7b\",\n  \"messages\": [\n    {\n      \"role\": \"user\",\n      \"content\": \"Hello, how are you?\"\n    }\n  ]\n}\n

        The server routes requests to the appropriate instance based on the model field in the request body. Instances with on-demand starting enabled will be automatically started if not running. For configuration details, see Managing Instances.

        Error Responses: - 400 Bad Request: Invalid request body or missing instance name - 503 Service Unavailable: Instance is not running and on-demand start is disabled - 409 Conflict: Cannot start instance due to maximum instances limit

        "},{"location":"user-guide/api-reference/#instance-status-values","title":"Instance Status Values","text":"

        Instances can have the following status values: - stopped: Instance is not running - running: Instance is running and ready to accept requests - failed: Instance failed to start or crashed

        "},{"location":"user-guide/api-reference/#error-responses","title":"Error Responses","text":"

        All endpoints may return error responses in the following format:

        {\n  \"error\": \"Error message description\"\n}\n
        "},{"location":"user-guide/api-reference/#common-http-status-codes","title":"Common HTTP Status Codes","text":"
        • 200: Success
        • 201: Created
        • 204: No Content (successful deletion)
        • 400: Bad Request (invalid parameters or request body)
        • 401: Unauthorized (missing or invalid API key)
        • 403: Forbidden (insufficient permissions)
        • 404: Not Found (instance not found)
        • 409: Conflict (instance already exists, max instances reached)
        • 500: Internal Server Error
        • 503: Service Unavailable (instance not running)
        "},{"location":"user-guide/api-reference/#examples","title":"Examples","text":""},{"location":"user-guide/api-reference/#complete-instance-lifecycle","title":"Complete Instance Lifecycle","text":"
        # Create and start instance\ncurl -X POST http://localhost:8080/api/v1/instances/my-model \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"model\": \"/models/llama-2-7b.gguf\"\n  }'\n\n# Check instance status\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n\n# Get instance logs\ncurl -H \"Authorization: Bearer your-api-key\" \\\n  \"http://localhost:8080/api/v1/instances/my-model/logs?lines=50\"\n\n# Use OpenAI-compatible chat completions\ncurl -X POST http://localhost:8080/v1/chat/completions \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-inference-api-key\" \\\n  -d '{\n    \"model\": \"my-model\",\n    \"messages\": [\n      {\"role\": \"user\", \"content\": \"Hello!\"}\n    ],\n    \"max_tokens\": 100\n  }'\n\n# Stop instance\ncurl -X POST -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model/stop\n\n# Delete instance\ncurl -X DELETE -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances/my-model\n
        "},{"location":"user-guide/api-reference/#using-the-proxy-endpoint","title":"Using the Proxy Endpoint","text":"

        You can also directly proxy requests to the llama-server instance:

        # Direct proxy to instance (bypasses OpenAI compatibility layer)\ncurl -X POST http://localhost:8080/api/v1/instances/my-model/proxy/completion \\\n  -H \"Content-Type: application/json\" \\\n  -H \"Authorization: Bearer your-api-key\" \\\n  -d '{\n    \"prompt\": \"Hello, world!\",\n    \"n_predict\": 50\n  }'\n
        "},{"location":"user-guide/api-reference/#backend-specific-endpoints","title":"Backend-Specific Endpoints","text":""},{"location":"user-guide/api-reference/#parse-commands","title":"Parse Commands","text":"

        Llamactl provides endpoints to parse command strings from different backends into instance configuration options.

        "},{"location":"user-guide/api-reference/#parse-llamacpp-command","title":"Parse Llama.cpp Command","text":"

        Parse a llama-server command string into instance options.

        POST /api/v1/backends/llama-cpp/parse-command\n

        Request Body:

        {\n  \"command\": \"llama-server -m /path/to/model.gguf -c 2048 --port 8080\"\n}\n

        Response:

        {\n  \"backend_type\": \"llama_cpp\",\n  \"llama_server_options\": {\n    \"model\": \"/path/to/model.gguf\",\n    \"ctx_size\": 2048,\n    \"port\": 8080\n  }\n}\n

        "},{"location":"user-guide/api-reference/#parse-mlx-lm-command","title":"Parse MLX-LM Command","text":"

        Parse an MLX-LM server command string into instance options.

        POST /api/v1/backends/mlx/parse-command\n

        Request Body:

        {\n  \"command\": \"mlx_lm.server --model /path/to/model --port 8080\"\n}\n

        Response:

        {\n  \"backend_type\": \"mlx_lm\",\n  \"mlx_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

        "},{"location":"user-guide/api-reference/#parse-vllm-command","title":"Parse vLLM Command","text":"

        Parse a vLLM serve command string into instance options.

        POST /api/v1/backends/vllm/parse-command\n

        Request Body:

        {\n  \"command\": \"vllm serve /path/to/model --port 8080\"\n}\n

        Response:

        {\n  \"backend_type\": \"vllm\",\n  \"vllm_server_options\": {\n    \"model\": \"/path/to/model\",\n    \"port\": 8080\n  }\n}\n

        Error Responses for Parse Commands: - 400 Bad Request: Invalid request body, empty command, or parse error - 500 Internal Server Error: Encoding error

        "},{"location":"user-guide/api-reference/#auto-generated-documentation","title":"Auto-Generated Documentation","text":"

        The API documentation is automatically generated from code annotations using Swagger/OpenAPI. To regenerate the documentation:

        1. Install the swag tool: go install github.com/swaggo/swag/cmd/swag@latest
        2. Generate docs: swag init -g cmd/server/main.go -o apidocs
        "},{"location":"user-guide/api-reference/#swagger-documentation","title":"Swagger Documentation","text":"

        If swagger documentation is enabled in the server configuration, you can access the interactive API documentation at:

        http://localhost:8080/swagger/\n

        This provides a complete interactive interface for testing all API endpoints.

        "},{"location":"user-guide/managing-instances/","title":"Managing Instances","text":"

        Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.

        "},{"location":"user-guide/managing-instances/#overview","title":"Overview","text":"

        Llamactl provides two ways to manage instances:

        • Web UI: Accessible at http://localhost:8080 with an intuitive dashboard
        • REST API: Programmatic access for automation and integration

        "},{"location":"user-guide/managing-instances/#authentication","title":"Authentication","text":"

        If authentication is enabled: 1. Navigate to the web UI 2. Enter your credentials 3. Bearer token is stored for the session

        "},{"location":"user-guide/managing-instances/#theme-support","title":"Theme Support","text":"
        • Switch between light and dark themes
        • Setting is remembered across sessions
        "},{"location":"user-guide/managing-instances/#instance-cards","title":"Instance Cards","text":"

        Each instance is displayed as a card showing:

        • Instance name
        • Health status badge (unknown, ready, error, failed)
        • Action buttons (start, stop, edit, logs, delete)
        "},{"location":"user-guide/managing-instances/#create-instance","title":"Create Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui","title":"Via Web UI","text":"
        1. Click the \"Create Instance\" button on the dashboard
        2. Enter a unique Name for your instance (only required field)
        3. Choose Backend Type:
          • llama.cpp: For GGUF models using llama-server
          • MLX: For MLX-optimized models (macOS only)
          • vLLM: For distributed serving and high-throughput inference
        4. Configure model source:
          • For llama.cpp: GGUF model path or HuggingFace repo
          • For MLX: MLX model path or identifier (e.g., mlx-community/Mistral-7B-Instruct-v0.3-4bit)
          • For vLLM: HuggingFace model identifier (e.g., microsoft/DialoGPT-medium)
        5. Configure optional instance management settings:
          • Auto Restart: Automatically restart instance on failure
          • Max Restarts: Maximum number of restart attempts
          • Restart Delay: Delay in seconds between restart attempts
          • On Demand Start: Start instance when receiving a request to the OpenAI compatible endpoint
          • Idle Timeout: Minutes before stopping idle instance (set to 0 to disable)
        6. Configure backend-specific options:
          • llama.cpp: Threads, context size, GPU layers, port, etc.
          • MLX: Temperature, top-p, adapter path, Python environment, etc.
          • vLLM: Tensor parallel size, GPU memory utilization, quantization, etc.
        7. Click \"Create\" to save the instance
        "},{"location":"user-guide/managing-instances/#via-api","title":"Via API","text":"
        # Create llama.cpp instance with local model file\ncurl -X POST http://localhost:8080/api/instances/my-llama-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"model\": \"/path/to/model.gguf\",\n      \"threads\": 8,\n      \"ctx_size\": 4096,\n      \"gpu_layers\": 32\n    }\n  }'\n\n# Create MLX instance (macOS only)\ncurl -X POST http://localhost:8080/api/instances/my-mlx-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"mlx_lm\",\n    \"backend_options\": {\n      \"model\": \"mlx-community/Mistral-7B-Instruct-v0.3-4bit\",\n      \"temp\": 0.7,\n      \"top_p\": 0.9,\n      \"max_tokens\": 2048\n    },\n    \"auto_restart\": true,\n    \"max_restarts\": 3\n  }'\n\n# Create vLLM instance\ncurl -X POST http://localhost:8080/api/instances/my-vllm-instance \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"vllm\",\n    \"backend_options\": {\n      \"model\": \"microsoft/DialoGPT-medium\",\n      \"tensor_parallel_size\": 2,\n      \"gpu_memory_utilization\": 0.9\n    },\n    \"auto_restart\": true,\n    \"on_demand_start\": true\n  }'\n\n# Create llama.cpp instance with HuggingFace model\ncurl -X POST http://localhost:8080/api/instances/gemma-3-27b \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_type\": \"llama_cpp\",\n    \"backend_options\": {\n      \"hf_repo\": \"unsloth/gemma-3-27b-it-GGUF\",\n      \"hf_file\": \"gemma-3-27b-it-GGUF.gguf\",\n      \"gpu_layers\": 32\n    }\n  }'\n
        "},{"location":"user-guide/managing-instances/#start-instance","title":"Start Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_1","title":"Via Web UI","text":"
        1. Click the \"Start\" button on an instance card
        2. Watch the status change to \"Unknown\"
        3. Monitor progress in the logs
        4. Instance status changes to \"Ready\" when ready
        "},{"location":"user-guide/managing-instances/#via-api_1","title":"Via API","text":"
        curl -X POST http://localhost:8080/api/instances/{name}/start\n
        "},{"location":"user-guide/managing-instances/#stop-instance","title":"Stop Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_2","title":"Via Web UI","text":"
        1. Click the \"Stop\" button on an instance card
        2. Instance gracefully shuts down
        "},{"location":"user-guide/managing-instances/#via-api_2","title":"Via API","text":"
        curl -X POST http://localhost:8080/api/instances/{name}/stop\n
        "},{"location":"user-guide/managing-instances/#edit-instance","title":"Edit Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_3","title":"Via Web UI","text":"
        1. Click the \"Edit\" button on an instance card
        2. Modify settings in the configuration dialog
        3. Changes require instance restart to take effect
        4. Click \"Update & Restart\" to apply changes
        "},{"location":"user-guide/managing-instances/#via-api_3","title":"Via API","text":"

        Modify instance settings:

        curl -X PUT http://localhost:8080/api/instances/{name} \\\n  -H \"Content-Type: application/json\" \\\n  -d '{\n    \"backend_options\": {\n      \"threads\": 8,\n      \"context_size\": 4096\n    }\n  }'\n

        Note

        Configuration changes require restarting the instance to take effect.

        "},{"location":"user-guide/managing-instances/#view-logs","title":"View Logs","text":""},{"location":"user-guide/managing-instances/#via-web-ui_4","title":"Via Web UI","text":"
        1. Click the \"Logs\" button on any instance card
        2. Real-time log viewer opens
        "},{"location":"user-guide/managing-instances/#via-api_4","title":"Via API","text":"

        Check instance status in real-time:

        # Get instance details\ncurl http://localhost:8080/api/instances/{name}/logs\n
        "},{"location":"user-guide/managing-instances/#delete-instance","title":"Delete Instance","text":""},{"location":"user-guide/managing-instances/#via-web-ui_5","title":"Via Web UI","text":"
        1. Click the \"Delete\" button on an instance card
        2. Only stopped instances can be deleted
        3. Confirm deletion in the dialog
        "},{"location":"user-guide/managing-instances/#via-api_5","title":"Via API","text":"
        curl -X DELETE http://localhost:8080/api/instances/{name}\n
        "},{"location":"user-guide/managing-instances/#instance-proxy","title":"Instance Proxy","text":"

        Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).

        # Get instance details\ncurl http://localhost:8080/api/instances/{name}/proxy/\n

        All backends provide OpenAI-compatible endpoints. Check the respective documentation: - llama-server docs - MLX-LM docs - vLLM docs

        "},{"location":"user-guide/managing-instances/#instance-health","title":"Instance Health","text":""},{"location":"user-guide/managing-instances/#via-web-ui_6","title":"Via Web UI","text":"
        1. The health status badge is displayed on each instance card
        "},{"location":"user-guide/managing-instances/#via-api_6","title":"Via API","text":"

        Check the health status of your instances:

        curl http://localhost:8080/api/instances/{name}/proxy/health\n
        "},{"location":"user-guide/troubleshooting/","title":"Troubleshooting","text":"

        Issues specific to Llamactl deployment and operation.

        "},{"location":"user-guide/troubleshooting/#configuration-issues","title":"Configuration Issues","text":""},{"location":"user-guide/troubleshooting/#invalid-configuration","title":"Invalid Configuration","text":"

        Problem: Invalid configuration preventing startup

        Solutions: 1. Use minimal configuration:

        server:\n  host: \"0.0.0.0\"\n  port: 8080\ninstances:\n  port_range: [8000, 9000]\n

        1. Check data directory permissions:
          # Ensure data directory is writable (default: ~/.local/share/llamactl)\nmkdir -p ~/.local/share/llamactl/{instances,logs}\n
        "},{"location":"user-guide/troubleshooting/#instance-management-issues","title":"Instance Management Issues","text":""},{"location":"user-guide/troubleshooting/#model-loading-failures","title":"Model Loading Failures","text":"

        Problem: Instance fails to start with model loading errors

        Common Solutions: - llama-server not found: Ensure llama-server binary is in PATH - Wrong model format: Ensure model is in GGUF format - Insufficient memory: Use smaller model or reduce context size - Path issues: Use absolute paths to model files

        "},{"location":"user-guide/troubleshooting/#memory-issues","title":"Memory Issues","text":"

        Problem: Out of memory errors or system becomes unresponsive

        Solutions: 1. Reduce context size:

        {\n  \"n_ctx\": 1024\n}\n

        1. Use quantized models:
        2. Try Q4_K_M instead of higher precision models
        3. Use smaller model variants (7B instead of 13B)
        "},{"location":"user-guide/troubleshooting/#gpu-configuration","title":"GPU Configuration","text":"

        Problem: GPU not being used effectively

        Solutions: 1. Configure GPU layers:

        {\n  \"n_gpu_layers\": 35\n}\n

        "},{"location":"user-guide/troubleshooting/#advanced-instance-issues","title":"Advanced Instance Issues","text":"

        Problem: Complex model loading, performance, or compatibility issues

        Since llamactl uses llama-server under the hood, many instance-related issues are actually llama.cpp issues. For advanced troubleshooting:

        Resources: - llama.cpp Documentation: https://github.com/ggml/llama.cpp - llama.cpp Issues: https://github.com/ggml/llama.cpp/issues - llama.cpp Discussions: https://github.com/ggml/llama.cpp/discussions

        Testing directly with llama-server:

        # Test your model and parameters directly with llama-server\nllama-server --model /path/to/model.gguf --port 8081 --n-gpu-layers 35\n

        This helps determine if the issue is with llamactl or with the underlying llama.cpp/llama-server.

        "},{"location":"user-guide/troubleshooting/#api-and-network-issues","title":"API and Network Issues","text":""},{"location":"user-guide/troubleshooting/#cors-errors","title":"CORS Errors","text":"

        Problem: Web UI shows CORS errors in browser console

        Solutions: 1. Configure allowed origins:

        server:\n  allowed_origins:\n    - \"http://localhost:3000\"\n    - \"https://yourdomain.com\"\n

        "},{"location":"user-guide/troubleshooting/#authentication-issues","title":"Authentication Issues","text":"

        Problem: API requests failing with authentication errors

        Solutions: 1. Disable authentication temporarily:

        auth:\n  require_management_auth: false\n  require_inference_auth: false\n

        1. Configure API keys:

          auth:\n  management_keys:\n    - \"your-management-key\"\n  inference_keys:\n    - \"your-inference-key\"\n

        2. Use correct Authorization header:

          curl -H \"Authorization: Bearer your-api-key\" \\\n  http://localhost:8080/api/v1/instances\n

        "},{"location":"user-guide/troubleshooting/#debugging-and-logs","title":"Debugging and Logs","text":""},{"location":"user-guide/troubleshooting/#viewing-instance-logs","title":"Viewing Instance Logs","text":"
        # Get instance logs via API\ncurl http://localhost:8080/api/v1/instances/{name}/logs\n\n# Or check log files directly\ntail -f ~/.local/share/llamactl/logs/{instance-name}.log\n
        "},{"location":"user-guide/troubleshooting/#enable-debug-logging","title":"Enable Debug Logging","text":"
        export LLAMACTL_LOG_LEVEL=debug\nllamactl\n
        "},{"location":"user-guide/troubleshooting/#getting-help","title":"Getting Help","text":"

        When reporting issues, include:

        1. System information:

          llamactl --version\n

        2. Configuration file (remove sensitive keys)

        3. Relevant log output

        4. Steps to reproduce the issue

        "}]} \ No newline at end of file diff --git a/dev/sitemap.xml b/dev/sitemap.xml index dfde90f..d916a96 100644 --- a/dev/sitemap.xml +++ b/dev/sitemap.xml @@ -2,37 +2,37 @@ https://llamactl.org/dev/ - 2025-09-23 + 2025-09-25 daily https://llamactl.org/dev/getting-started/configuration/ - 2025-09-23 + 2025-09-25 daily https://llamactl.org/dev/getting-started/installation/ - 2025-09-23 + 2025-09-25 daily https://llamactl.org/dev/getting-started/quick-start/ - 2025-09-23 + 2025-09-25 daily https://llamactl.org/dev/user-guide/api-reference/ - 2025-09-23 + 2025-09-25 daily https://llamactl.org/dev/user-guide/managing-instances/ - 2025-09-23 + 2025-09-25 daily https://llamactl.org/dev/user-guide/troubleshooting/ - 2025-09-23 + 2025-09-25 daily \ No newline at end of file diff --git a/dev/sitemap.xml.gz b/dev/sitemap.xml.gz index 62380dad746983d08d5ecb8a849920104e0cbde1..7468139d33e6771986e2e4f25f61fa712a4d70ed 100644 GIT binary patch delta 273 zcmV+s0q*{!0;2*4ABzYGBd^tw2OWQlRB4@3dfO9h55R~+&xsq}A*N|6 z(Gm=5#4|E@WKXH!sDIJ{({l X!n_;*54#-slaoI%SNqTu1pom62V8$k delta 274 zcmV+t0qy>y0;B>5ABzYGiv-h=2OWRQG-;g@dfO9h55T}BXarJBn(gi9B-NDb4wF(} zu+6VupDaUj`s#ggg@i7KmOYdeD?9A(m^?x*NF1Zw)t0S);NpkCLWV%zq!a2c38s+?VBQ~8CL;Q05iO53EG!c$jr3^;s7|za)No5+_ z9q_t98L93B_cA*DxmG)*9T5_@qcb4X;CO;FBziNjZ`57|W#=I;yFj?OZ{D2Z_~8M& Y80X#if7s=qPfq>-5ajAa6a@kR0Ql{LTmS$7