#include #include #include #include #include #include #include #include std::vector readAndNormalizeImage(const std::string& imagePath, int width, int height) { // Read the image using OpenCV cv::Mat image = cv::imread(imagePath, cv::IMREAD_GRAYSCALE); // Resize and normalize the image cv::resize(image, image, cv::Size(width, height)); image.convertTo(image, CV_32F); cv::normalize(image, image, 0.0, 1.0, cv::NORM_MINMAX); // Convert the 2D image matrix to a 1D array of floats std::vector imageData; for (int i = 0; i < image.rows; ++i) { for (int j = 0; j < image.cols; ++j) { imageData.push_back(image.at(i, j)); } } return imageData; } CUDANet::Model* createModel(const int inputSize, const int inputChannels, const int outputSize) { CUDANet::Model *model = new CUDANet::Model(inputSize, inputChannels, outputSize); // Block 1 CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d( inputSize, inputChannels, 11, 4, 64, 2, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.0", conv1); // Match pytorch naming CUDANet::Layers::MaxPooling2D *pool1 = new CUDANet::Layers::MaxPooling2D( 56, 64, 3, 2, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool1", pool1); // Block 2 CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d( 27, 64, 5, 1, 192, 2, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.3", conv2); CUDANet::Layers::MaxPooling2D *pool2 = new CUDANet::Layers::MaxPooling2D( 27, 192, 3, 2, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool2", pool2); // Block 3 CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d( 13, 192, 3, 1, 384, 1, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.6", conv3); // Block 4 CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d( 13, 384, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.8", conv4); // Block 5 CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d( 13, 256, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.10", conv5); CUDANet::Layers::MaxPooling2D *pool5 = new CUDANet::Layers::MaxPooling2D( 13, 256, 3, 2, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool5", pool5); // Classifier CUDANet::Layers::Dense *dense1 = new CUDANet::Layers::Dense( 6 * 6 * 256, 4096, CUDANet::Layers::ActivationType::RELU ); model->addLayer("classifier.1", dense1); CUDANet::Layers::Dense *dense2 = new CUDANet::Layers::Dense( 4096, 4096, CUDANet::Layers::ActivationType::RELU ); model->addLayer("classifier.4", dense2); CUDANet::Layers::Dense *dense3 = new CUDANet::Layers::Dense( 4096, 1000, CUDANet::Layers::ActivationType::NONE ); model->addLayer("classifier.6", dense3); return model; } int main(int argc, const char* const argv[]) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " " << std::endl; return 1; // Return error code indicating incorrect usage } // Path to the image file std::string modelWeightsPath = argv[1]; std::string imagePath = argv[2]; const int inputSize = 227; const int inputChannels = 3; const int outputSize = 1000; CUDANet::Model *model = createModel(inputSize, inputChannels, outputSize); model->loadWeights(modelWeightsPath); // Read and normalize the image std::vector imageData = readAndNormalizeImage(imagePath, inputSize, inputSize); // Print the size of the image data float* output = model->predict(imageData.data()); // Get max index int maxIndex = 0; for (int i = 0; i < outputSize; i++) { if (output[i] > output[maxIndex]) { maxIndex = i; } } std::cout << "Prediction: " << maxIndex << std::endl; return 0; }