#include #include #include #include "cuda_helper.cuh" #include "vector.cuh" #include "matmul.cuh" TEST(MatMulTest, MatVecMulTest) { cudaError_t cudaStatus; int w = 10; int h = 5; float* d_matrix; float* d_vector; float* d_output; cudaStatus = cudaMalloc((void**)&d_matrix, sizeof(float) * w * h); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void**)&d_vector, sizeof(float) * w); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * h); EXPECT_EQ(cudaStatus, cudaSuccess); std::vector matrix = { 0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f, 0.641f, 0.445f, 0.528f, 0.316f, 0.247f, 0.181f, 0.549f, 0.328f, 0.919f, 0.405f, 0.733f, 0.287f, 0.901f, 0.602f, 0.816f, 0.495f, 0.797f, 0.210f, 0.305f, 0.613f, 0.178f, 0.856f, 0.724f, 0.263f, 0.559f, 0.677f, 0.193f, 0.389f, 0.488f, 0.848f, 0.121f, 0.734f, 0.587f, 0.904f, 0.312f, 0.672f, 0.807f, 0.478f, 0.581f, 0.964f }; std::vector vector = { 0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f }; cudaStatus = cudaMemcpy(d_matrix, matrix.data(), sizeof(float) * w * h, cudaMemcpyHostToDevice); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy(d_vector, vector.data(), sizeof(float) * w, cudaMemcpyHostToDevice); EXPECT_EQ(cudaStatus, cudaSuccess); int grid_size = (std::max(w, h) + BLOCK_SIZE - 1) / BLOCK_SIZE; CUDANet::Utils::clear(d_output, h); CUDANet::Kernels::mat_vec_mul<<>>(d_matrix, d_vector, d_output, w, h); cudaStatus = cudaDeviceSynchronize(); EXPECT_EQ(cudaStatus, cudaSuccess); std::vector output_gpu(h); cudaStatus = cudaMemcpy(output_gpu.data(), d_output, sizeof(float) * h, cudaMemcpyDeviceToHost); EXPECT_EQ(cudaStatus, cudaSuccess); for (int i = 0; i < h; i++) { float sum = 0.0f; for (int j = 0; j < w; j++) { sum += matrix[i * w + j] * vector[j]; } EXPECT_NEAR(sum, output_gpu[i], 1e-5f); } cudaFree(d_matrix); cudaFree(d_vector); cudaFree(d_output); cudaDeviceReset(); } TEST(MatMulTest, MaxReduceTest) { cudaError_t cudaStatus; const int n = 1 << 16; std::vector input(n); for (int i = 0; i < n; i++) { input[i] = i; } float* d_input; float* d_output; cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * n); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice); EXPECT_EQ(cudaStatus, cudaSuccess); const int grid_size = (n + BLOCK_SIZE - 1) / BLOCK_SIZE; CUDANet::Kernels::max_reduce<<>>(d_input, d_output, n); int remaining = grid_size; while (remaining > 1) { int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE; CUDANet::Kernels::max_reduce<<>>(d_output, d_output, remaining); remaining = blocks_needed; } std::vector output(n); cudaStatus = cudaMemcpy(output.data(), d_output, sizeof(float), cudaMemcpyDeviceToHost); EXPECT_EQ(cudaStatus, cudaSuccess); EXPECT_EQ(output[0], 65535.0f); cudaFree(d_input); cudaFree(d_output); cudaDeviceReset(); } TEST(MatMulTest, VecExpTest) { cudaError_t cudaStatus; float input[6] = {22.496f, 36.9006f, 30.9904f, 28.4213f, 26.4541f, 31.7887f}; std::vector expected = {5886928896.0f, 1.06102872080384e+16f, 28771323215872.0f, 2204012904448.0f, 308226162688.0f, 63922983927808.0f}; float* d_input; float* d_output; cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice); EXPECT_EQ(cudaStatus, cudaSuccess); CUDANet::Kernels::vec_exp<<<1, 6>>>(d_input, d_output, 6); cudaStatus = cudaDeviceSynchronize(); EXPECT_EQ(cudaStatus, cudaSuccess); std::vector output(6); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); for (int i = 0; i < 6; i++) { EXPECT_NEAR(expected[i], output[i], 1e7f); } cudaFree(d_input); cudaFree(d_output); cudaDeviceReset(); } TEST(MatMulTest, SumReduceTest) { cudaError_t cudaStatus; const int n = 1 << 16; std::vector input(n); for (int i = 0; i < n; i++) { input[i] = 1.0f; } const float expected = n; float* d_input = nullptr; float* d_sum = nullptr; const int gridSize = (n + BLOCK_SIZE - 1) / BLOCK_SIZE; cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void**)&d_sum, sizeof(float) * n); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice); EXPECT_EQ(cudaStatus, cudaSuccess); CUDANet::Kernels::sum_reduce<<>>( d_input, d_sum, n ); int remaining = gridSize; while (remaining > 1) { int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE; CUDANet::Kernels::sum_reduce<<>>(d_sum, d_sum, remaining); remaining = blocks_needed; } std::vector sum(n); cudaStatus = cudaMemcpy( sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); EXPECT_FLOAT_EQ(expected, sum[0]); cudaFree(d_input); cudaFree(d_sum); cudaDeviceReset(); }