#include #include #include #include std::vector readAndNormalizeImage(const std::string &imagePath, int width, int height) { // Read the image using OpenCV cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR); // Resize and normalize the image cv::resize(image, image, cv::Size(width, height)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); // Normalize the image https://pytorch.org/hub/pytorch_vision_alexnet/ cv::Mat mean(image.size(), CV_32FC3, cv::Scalar(0.485, 0.456, 0.406)); cv::Mat std(image.size(), CV_32FC3, cv::Scalar(0.229, 0.224, 0.225)); cv::subtract(image, mean, image); cv::divide(image, std, image); // Convert the 3D image matrix to a 1D array of floats std::vector imageData; for (int c = 0; c < image.channels(); ++c) { for (int i = 0; i < image.rows; ++i) { for (int j = 0; j < image.cols; ++j) { imageData.push_back(image.at(i, j)[c]); } } } return imageData; } CUDANet::Model *createModel( const shape2d inputSize, const int inputChannels, const int outputSize ) { CUDANet::Model *model = new CUDANet::Model(inputSize, inputChannels, outputSize); // Block 1 CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d( inputSize, inputChannels, {11, 11}, {4, 4}, 64, {2, 2}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.0", conv1); // Match pytorch naming CUDANet::Layers::MaxPooling2d *pool1 = new CUDANet::Layers::MaxPooling2d( {56, 56}, 64, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool1", pool1); // Block 2 CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d( {27, 27}, 64, {5, 5}, {1, 1}, 192, {2, 2}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.3", conv2); CUDANet::Layers::MaxPooling2d *pool2 = new CUDANet::Layers::MaxPooling2d( {27, 27}, 192, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool2", pool2); // Block 3 CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d( {13, 13}, 192, {3, 3}, {1, 1}, 384, {1, 1}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.6", conv3); // Block 4 CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d( {13, 13}, 384, {3, 3}, {1, 1}, 256, {1, 1}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.8", conv4); // Block 5 CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d( {13, 13}, 256, {3, 3}, {1, 1}, 256, {1, 1}, CUDANet::Layers::ActivationType::RELU ); model->addLayer("features.10", conv5); CUDANet::Layers::MaxPooling2d *pool5 = new CUDANet::Layers::MaxPooling2d( {13, 13}, 256, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); model->addLayer("pool5", pool5); // Classifier CUDANet::Layers::Dense *dense1 = new CUDANet::Layers::Dense( 6 * 6 * 256, 4096, CUDANet::Layers::ActivationType::RELU ); model->addLayer("classifier.1", dense1); CUDANet::Layers::Dense *dense2 = new CUDANet::Layers::Dense( 4096, 4096, CUDANet::Layers::ActivationType::RELU ); model->addLayer("classifier.4", dense2); CUDANet::Layers::Dense *dense3 = new CUDANet::Layers::Dense( 4096, 1000, CUDANet::Layers::ActivationType::NONE ); model->addLayer("classifier.6", dense3); return model; } int main(int argc, const char *const argv[]) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " " << std::endl; return 1; // Return error code indicating incorrect usage } // Path to the image file std::string modelWeightsPath = argv[1]; std::string imagePath = argv[2]; const shape2d inputSize = {227, 227}; const int inputChannels = 3; const int outputSize = 1000; CUDANet::Model *model = createModel(inputSize, inputChannels, outputSize); model->validate(); model->loadWeights(modelWeightsPath); // Read and normalize the image std::vector imageData = readAndNormalizeImage(imagePath, inputSize.first, inputSize.second); // Print the size of the image data const float *output = model->predict(imageData.data()); // Get max index int maxIndex = 0; for (int i = 0; i < outputSize; i++) { if (output[i] > output[maxIndex]) { maxIndex = i; } } std::string classLabel = CUDANet::Utils::IMAGENET_CLASS_MAP.at(maxIndex); std::cout << "Prediction: " << maxIndex << " " << classLabel << std::endl; return 0; }