#include #include #include #include "activation.cuh" #include "dense.cuh" class DenseLayerTest : public ::testing::Test { protected: CUDANet::Layers::Dense commonTestSetup( int inputSize, int outputSize, std::vector& input, float* weights, float* biases, float*& d_input, CUDANet::Layers::ActivationType activationType ) { // Create Dense layer CUDANet::Layers::Dense denseLayer(inputSize, outputSize, activationType); // Set weights and biases denseLayer.setWeights(weights); denseLayer.setBiases(biases); // Allocate device memory cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size()); EXPECT_EQ(cudaStatus, cudaSuccess); // Copy input to device cudaStatus = cudaMemcpy( d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice ); EXPECT_EQ(cudaStatus, cudaSuccess); return denseLayer; } void commonTestTeardown(float* d_input) { // Free device memory cudaFree(d_input); } cudaError_t cudaStatus; }; TEST_F(DenseLayerTest, Init) { for (int i = 1; i < 100; ++i) { for (int j = 1; j < 100; ++j) { int inputSize = i; int outputSize = j; CUDANet::Layers::Dense denseLayer( inputSize, outputSize, CUDANet::Layers::ActivationType::SIGMOID ); } } } TEST_F(DenseLayerTest, setWeights) { int inputSize = 4; int outputSize = 5; // clang-format off std::vector weights = { 0.5f, 1.0f, 0.2f, 0.8f, 1.2f, 0.3f, 1.5f, 0.4f, 0.7f, 1.8f, 0.9f, 0.1f, 0.4f, 2.0f, 0.6f, 1.1f, 1.3f, 0.5f, 0.0f, 1.7f }; // clang-format on CUDANet::Layers::Dense denseLayer( inputSize, outputSize, CUDANet::Layers::ActivationType::SIGMOID ); denseLayer.setWeights(weights.data()); } TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) { int inputSize = 3; int outputSize = 3; std::vector input = {1.0f, 2.0f, 3.0f}; std::vector weights(outputSize * inputSize, 0.0f); for (int i = 0; i < inputSize; ++i) { for (int j = 0; j < outputSize; ++j) { if (i == j) { weights[i * outputSize + j] = 1.0f; } } } std::vector biases(outputSize, 1.0f); float* d_input; float* d_output; CUDANet::Layers::Dense denseLayer = commonTestSetup( inputSize, outputSize, input, weights.data(), biases.data(), d_input, CUDANet::Layers::ActivationType::NONE ); d_output = denseLayer.forward(d_input); std::vector output(outputSize); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); // Check if the output is a zero vector EXPECT_FLOAT_EQ(output[0], 2.0f); EXPECT_FLOAT_EQ(output[1], 3.0f); EXPECT_FLOAT_EQ(output[2], 4.0f); commonTestTeardown(d_input); } TEST_F(DenseLayerTest, ForwardRandomWeightMatrixRelu) { int inputSize = 5; int outputSize = 4; std::vector input = {1.0f, 2.0f, 3.0f, 4.0f, -5.0f}; // clang-format off std::vector weights = { 0.5f, 1.2f, 0.7f, 0.4f, 1.3f, 1.0f, 0.3f, 1.8f, 2.0f, 0.5f, 0.2f, 1.5f, 0.9f, 0.6f, 0.0f, 0.8f, 0.4f, 0.1f, 1.1f, 1.7f }; std::vector biases = {0.2f, 0.5f, 0.7f, -1.1f}; // clang-format on float* d_input; float* d_output; CUDANet::Layers::Dense denseLayer = commonTestSetup( inputSize, outputSize, input, weights.data(), biases.data(), d_input, CUDANet::Layers::ActivationType::RELU ); d_output = denseLayer.forward(d_input); std::vector output(outputSize); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); // weights * inputs = 0.1, 12.5, 8.3, -2.2 // + biases = 0.3, 13, 9, -3.3 std::vector expectedOutput = {0.3f, 13.0f, 9.0f, 0.0f}; for (int i = 0; i < outputSize; ++i) { EXPECT_NEAR( output[i], expectedOutput[i], 1e-4 ); // Allow small tolerance for floating-point comparison } commonTestTeardown(d_input); } TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) { int inputSize = 5; int outputSize = 4; // clang-format off std::vector input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f}; std::vector weights = { 0.8f, 0.7f, 0.7f, 0.3f, 0.8f, 0.1f, 0.4f, 0.8f, 0.0f, 0.2f, 0.2f, 0.5f, 0.7f, 0.3f, 0.0f, 0.1f, 0.7f, 0.6f, 1.0f, 0.4f }; std::vector biases = {0.1f, 0.2f, 0.3f, 0.4f}; // clang-format on float* d_input; float* d_output; CUDANet::Layers::Dense denseLayer = commonTestSetup( inputSize, outputSize, input, weights.data(), biases.data(), d_input, CUDANet::Layers::ActivationType::SIGMOID ); d_output = denseLayer.forward(d_input); std::vector output(outputSize); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); // weights * input = 0.95, 0.43, 0.45, 0.93 // + biases = 1.05, 0.63, 0.75, 1.33 // sigmoid = 0.740775, 0.652489, 0.679179, 0.790841 std::vector expectedOutput = { 0.740775f, 0.652489f, 0.679179f, 0.790841f }; for (int i = 0; i < outputSize; ++i) { EXPECT_NEAR(output[i], expectedOutput[i], 1e-5); } commonTestTeardown(d_input); }