import torch import utils class TestModel(torch.nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.conv1 = torch.nn.Conv2d( in_channels=2, out_channels=2, kernel_size=3, stride=1, padding=0, bias=False ) self.maxpool1 = torch.nn.MaxPool2d( kernel_size=2, stride=2 ) self.activation = torch.nn.ReLU() self.linear = torch.nn.Linear( in_features=8, out_features=3, bias=False ) self.softmax = torch.nn.Softmax(dim=0) def set_weights(self): conv2d_weights = torch.tensor([ 0.18313, 0.53363, 0.39527, 0.27575, 0.3433, 0.41746, 0.16831, 0.61693, 0.54599, 0.99692, 0.77127, 0.25146, 0.4206, 0.16291, 0.93484, 0.79765, 0.74982, 0.78336, 0.6386, 0.87744, 0.33587, 0.9691, 0.68437, 0.65098, 0.48153, 0.97546, 0.8026, 0.36689, 0.98152, 0.37351, 0.68407, 0.2684, 0.2855, 0.76195, 0.67828, 0.603 ]).reshape(2, 2, 3, 3) self.conv1.weight = torch.nn.Parameter(conv2d_weights) linear_weights = torch.tensor([ 0.36032, 0.33115, 0.02948, 0.09802, 0.45072, 0.56266, 0.43514, 0.80946, 0.43439, 0.90916, 0.08605, 0.07473, 0.94788, 0.66168, 0.34927, 0.09464, 0.61963, 0.73775, 0.51559, 0.81916, 0.64915, 0.03934, 0.87608, 0.68364, ]).reshape(3, 8) self.linear.weight = torch.nn.Parameter(linear_weights) def forward(self, x): x = self.conv1(x) x = self.maxpool1(x) x = self.activation(x) x = torch.flatten(x) x = self.linear(x) x = self.softmax(x) return x if __name__ == "__main__": model = TestModel() model.set_weights() input = torch.tensor([ 0.12762, 0.99056, 0.77565, 0.29058, 0.29787, 0.58415, 0.20484, 0.05415, 0.60593, 0.3162, 0.08198, 0.92749, 0.72392, 0.91786, 0.65266, 0.80908, 0.53389, 0.36069, 0.18614, 0.52381, 0.08525, 0.43054, 0.3355, 0.96587, 0.98194, 0.71336, 0.78392, 0.50648, 0.40355, 0.31863, 0.54686, 0.1836, 0.77171, 0.01262, 0.41108, 0.53467, 0.3553, 0.42808, 0.45798, 0.29958, 0.3923, 0.98277, 0.02033, 0.99868, 0.90584, 0.57554, 0.15957, 0.91273, 0.38901, 0.27097, 0.64788, 0.84272, 0.42984, 0.07466, 0.53658, 0.83388, 0.28232, 0.48046, 0.85626, 0.04721, 0.36139, 0.6123, 0.56991, 0.84854, 0.61415, 0.2466, 0.20017, 0.78952, 0.93797, 0.27884, 0.30514, 0.23521 ]).reshape(2, 6, 6) # input = torch.rand(2, 6, 6) out = model(input) utils.print_cpp_vector(out)