#include #include class BasicConv2dTest : public ::testing::Test { protected: BasicConv2d *basic_conv2d; shape2d inputShape; int inputChannels; int outputChannels; shape2d kernelSize; shape2d stride; shape2d padding; std::string prefix = "test"; float *d_input; float *d_output; std::vector input; std::vector expected; std::vector convWeights; std::vector convBiases; std::vector bnWeights; std::vector bnBiases; virtual void SetUp() override { basic_conv2d = nullptr; } virtual void TearDown() override { // Clean up delete basic_conv2d; } void runTest() { cudaError_t cudaStatus; basic_conv2d = new BasicConv2d( inputShape, inputChannels, outputChannels, kernelSize, stride, padding, prefix ); std::pair layerPair = basic_conv2d->getLayers()[0]; ASSERT_EQ(layerPair.first, prefix + ".conv"); CUDANet::Layers::Conv2d *conv = dynamic_cast(layerPair.second); conv->setWeights(convWeights.data()); conv->setBiases(convBiases.data()); ASSERT_EQ(conv->getWeights().size(), convWeights.size()); ASSERT_EQ(conv->getBiases().size(), convBiases.size()); cudaStatus = cudaGetLastError(); EXPECT_EQ(cudaStatus, cudaSuccess); layerPair = basic_conv2d->getLayers()[1]; ASSERT_EQ(layerPair.first, prefix + ".bn"); CUDANet::Layers::BatchNorm2d *bn = dynamic_cast(layerPair.second); bn->setWeights(bnWeights.data()); bn->setBiases(bnBiases.data()); ASSERT_EQ(bn->getWeights().size(), bnWeights.size()); ASSERT_EQ(bn->getBiases().size(), bnBiases.size()); cudaStatus = cudaGetLastError(); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void **)&d_input, sizeof(float) * input.size()); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy( d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice ); EXPECT_EQ(cudaStatus, cudaSuccess); d_output = basic_conv2d->forward(d_input); cudaStatus = cudaGetLastError(); EXPECT_EQ(cudaStatus, cudaSuccess); int outputSize = basic_conv2d->getOutputSize(); std::vector output(outputSize); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * output.size(), cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); for (int i = 0; i < output.size(); ++i) { EXPECT_NEAR(expected[i], output[i], 1e-5f); } } }; TEST_F(BasicConv2dTest, BasicConv2dTest1) { inputShape = {8, 8}; inputChannels = 3; outputChannels = 6; kernelSize = {3, 3}; stride = {1, 1}; padding = {1, 1}; // 3x3x3x6 convWeights = { 0.18365f, 0.08568f, 0.08126f, 0.68022f, 0.41391f, 0.71204f, 0.66917f, 0.63586f, 0.28914f, 0.43624f, 0.03018f, 0.47986f, 0.71336f, 0.82706f, 0.587f, 0.58516f, 0.29813f, 0.19312f, 0.42975f, 0.62522f, 0.34256f, 0.28057f, 0.37367f, 0.54325f, 0.63421f, 0.46445f, 0.56908f, 0.95247f, 0.73934f, 0.51263f, 0.14464f, 0.0956f, 0.68846f, 0.14675f, 0.75427f, 0.50547f, 0.37078f, 0.03316f, 0.42855f, 0.94293f, 0.73855f, 0.86475f, 0.20687f, 0.37793f, 0.77947f, 0.24402f, 0.07547f, 0.22212f, 0.57188f, 0.5098f, 0.71999f, 0.63828f, 0.53237f, 0.42874f, 0.43621f, 0.87348f, 0.0073f, 0.07752f, 0.45232f, 0.78307f, 0.74813f, 0.73456f, 0.0378f, 0.78518f, 0.6989f, 0.50484f, 0.74265f, 0.39178f, 0.91015f, 0.11684f, 0.11499f, 0.10394f, 0.30637f, 0.86116f, 0.63743f, 0.64142f, 0.97882f, 0.30948f, 0.32144f, 0.76108f, 0.81794f, 0.50111f, 0.82209f, 0.49028f, 0.79417f, 0.3257f, 0.32221f, 0.4007f, 0.86371f, 0.2271f, 0.9414f, 0.66233f, 0.60802f, 0.65701f, 0.41021f, 0.1135f, 0.21892f, 0.93389f, 0.65786f, 0.26068f, 0.59535f, 0.15048f, 0.48185f, 0.91072f, 0.18252f, 0.64154f, 0.89179f, 0.54726f, 0.60756f, 0.31149f, 0.30717f, 0.79877f, 0.71727f, 0.12418f, 0.48471f, 0.46097f, 0.66898f, 0.35467f, 0.38027f, 0.16989f, 0.88578f, 0.84377f, 0.26529f, 0.26057f, 0.30256f, 0.84876f, 0.8849f, 0.08982f, 0.88191f, 0.1944f, 0.42052f, 0.62898f, 0.692f, 0.51155f, 0.99903f, 0.56947f, 0.73144f, 0.88091f, 0.28472f, 0.98895f, 0.41364f, 0.1927f, 0.07227f, 0.421f, 0.85347f, 0.19329f, 0.07098f, 0.19418f, 0.06585f, 0.49083f, 0.85071f, 0.96747f, 0.45057f, 0.54361f, 0.49552f, 0.23454f, 0.97412f, 0.26663f, 0.09274f, 0.1662f, 0.04784f, 0.76303f }; convBiases.resize(outputChannels, 0.0f); bnWeights = {0.69298f, 0.27049f, 0.85854f, 0.52973f, 0.29644f, 0.68932f}; bnBiases = {0.74976f, 0.42745f, 0.22132f, 0.21262f, 0.03726f, 0.9719f}; input = { 0.75539f, 0.17641f, 0.8331f, 0.80627f, 0.51712f, 0.87756f, 0.97027f, 0.21354f, 0.28498f, 0.05118f, 0.37124f, 0.40528f, 0.13661f, 0.08692f, 0.73809f, 0.57278f, 0.73534f, 0.31338f, 0.15362f, 0.80245f, 0.49524f, 0.81208f, 0.24074f, 0.42534f, 0.62236f, 0.75915f, 0.06382f, 0.66723f, 0.13448f, 0.96896f, 0.87197f, 0.67366f, 0.67885f, 0.49345f, 0.08446f, 0.94116f, 0.8659f, 0.22848f, 0.53262f, 0.51307f, 0.89661f, 0.72223f, 0.90541f, 0.47353f, 0.85476f, 0.04177f, 0.04039f, 0.7917f, 0.56188f, 0.53777f, 0.91714f, 0.84847f, 0.16995f, 0.59803f, 0.05454f, 0.00365f, 0.01429f, 0.42586f, 0.31519f, 0.222f, 0.9149f, 0.51885f, 0.82969f, 0.42778f, 0.82913f, 0.01303f, 0.92699f, 0.09225f, 0.00284f, 0.75769f, 0.74072f, 0.59012f, 0.40777f, 0.0469f, 0.08751f, 0.23163f, 0.51327f, 0.67095f, 0.31971f, 0.97841f, 0.82292f, 0.58917f, 0.31565f, 0.4728f, 0.41885f, 0.36524f, 0.28194f, 0.70945f, 0.36008f, 0.23199f, 0.71093f, 0.33364f, 0.34199f, 0.42114f, 0.40026f, 0.77819f, 0.79858f, 0.93793f, 0.45238f, 0.97922f, 0.73814f, 0.11831f, 0.08414f, 0.56552f, 0.99841f, 0.53862f, 0.71138f, 0.42274f, 0.48724f, 0.48201f, 0.5361f, 0.97138f, 0.27607f, 0.33018f, 0.07456f, 0.77788f, 0.58824f, 0.77027f, 0.3938f, 0.28081f, 0.14074f, 0.06907f, 0.75419f, 0.11888f, 0.35715f, 0.34481f, 0.05669f, 0.21063f, 0.8664f, 0.00087f, 0.88281f, 0.55202f, 0.68655f, 0.96262f, 0.53907f, 0.9227f, 0.74055f, 0.84487f, 0.22792f, 0.83233f, 0.42938f, 0.39054f, 0.59604f, 0.4141f, 0.25982f, 0.9311f, 0.35475f, 0.71432f, 0.29186f, 0.16604f, 0.90708f, 0.00171f, 0.11541f, 0.35719f, 0.9221f, 0.18793f, 0.90198f, 0.29281f, 0.72144f, 0.54645f, 0.71165f, 0.59584f, 0.24041f, 0.60954f, 0.64945f, 0.8122f, 0.34145f, 0.92178f, 0.99894f, 0.25076f, 0.45067f, 0.71997f, 0.09573f, 0.57334f, 0.63273f, 0.49469f, 0.72747f, 0.33449f, 0.13755f, 0.49458f, 0.50319f, 0.91328f, 0.57269f, 0.21927f, 0.36831f, 0.88708f, 0.62277f, 0.08318f, 0.01425f, 0.17998f, 0.34614f, 0.82303f }; expected = { 0.0f, 0.49814f, 0.22097f, 0.3619f, 0.46957f, 0.69706f, 1.06759f, 0.25578f, 0.0f, 0.91978f, 0.53499f, 0.78382f, 1.13748f, 1.27999f, 1.39561f, 0.59403f, 0.1681f, 1.1653f, 0.9397f, 0.99945f, 1.09875f, 1.11738f, 1.48957f, 0.39551f, 0.17473f, 1.36075f, 1.38633f, 1.10036f, 1.66809f, 1.24004f, 1.51673f, 0.35859f, 0.50363f, 1.90002f, 1.76062f, 1.77264f, 1.653f, 0.98297f, 0.97645f, 0.36179f, 0.65388f, 1.82326f, 1.62819f, 1.53234f, 1.52987f, 1.1909f, 1.19085f, 0.0f, 0.0f, 1.00418f, 0.9884f, 1.06528f, 1.10918f, 0.95965f, 1.01066f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.06699f, 0.0f, 0.0f, 0.0f, 0.31227f, 0.1577f, 0.24142f, 0.29244f, 0.35219f, 0.55728f, 0.09206f, 0.18279f, 0.52608f, 0.43298f, 0.57281f, 0.64957f, 0.67697f, 0.79076f, 0.25769f, 0.17322f, 0.45144f, 0.50649f, 0.44384f, 0.45046f, 0.52827f, 0.65169f, 0.26233f, 0.33391f, 0.54569f, 0.61824f, 0.71162f, 0.72201f, 0.59606f, 0.69006f, 0.17808f, 0.53409f, 0.84795f, 0.81671f, 0.72767f, 0.70439f, 0.49824f, 0.77586f, 0.28972f, 0.41066f, 0.78739f, 0.74518f, 0.69849f, 0.72851f, 0.58154f, 0.59843f, 0.0988f, 0.12992f, 0.69539f, 0.58411f, 0.53047f, 0.67763f, 0.45745f, 0.42961f, 0.02356f, 0.0f, 0.1524f, 0.17941f, 0.20621f, 0.07853f, 0.0f, 0.01425f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.53197f, 0.23141f, 0.65858f, 0.51061f, 1.18983f, 1.88715f, 0.0f, 0.0f, 0.48249f, 0.27706f, 0.4758f, 0.37868f, 0.19115f, 1.3417f, 0.0f, 0.0f, 0.79729f, 0.40467f, 0.75802f, 1.25205f, 1.05397f, 0.99662f, 0.0f, 0.05866f, 1.25683f, 1.37623f, 1.3692f, 0.8155f, 0.79031f, 0.79231f, 0.0f, 0.66813f, 1.55738f, 0.86795f, 1.74891f, 1.46206f, 0.44267f, 0.71223f, 0.0f, 0.01532f, 0.9517f, 0.9068f, 0.04987f, 0.68475f, 0.60834f, 0.5695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.13772f, 0.0f, 0.0f, 0.54903f, 0.17714f, 0.56106f, 0.37474f, 0.59682f, 0.80188f, 0.23357f, 0.0f, 0.3935f, 0.10723f, 0.21271f, 0.2933f, 0.40208f, 0.98239f, 0.19075f, 0.06934f, 0.69707f, 0.59654f, 0.72836f, 0.94042f, 0.29819f, 0.65969f, 0.15544f, 0.21691f, 0.94429f, 0.74025f, 0.57482f, 0.85235f, 0.6364f, 0.64997f, 0.43117f, 0.23959f, 0.86925f, 0.74496f, 1.18404f, 0.91728f, 0.66074f, 0.14145f, 0.0f, 0.0f, 0.82383f, 0.54479f, 0.37769f, 0.37376f, 0.18698f, 0.41482f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.19054f, 0.0f, 0.0f, 0.13366f, 0.02072f, 0.17679f, 0.21344f, 0.22093f, 0.39159f, 0.0f, 0.0f, 0.21636f, 0.1152f, 0.05384f, 0.17127f, 0.31197f, 0.26403f, 0.0f, 0.0f, 0.2079f, 0.40094f, 0.25855f, 0.2949f, 0.21378f, 0.29504f, 0.0f, 0.0f, 0.55198f, 0.28422f, 0.44235f, 0.39818f, 0.24589f, 0.24885f, 0.0f, 0.0f, 0.39978f, 0.49578f, 0.31662f, 0.57204f, 0.22104f, 0.09188f, 0.0f, 0.0f, 0.30446f, 0.11957f, 0.18297f, 0.21063f, 0.11165f, 0.1131f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.04903f, 0.0f, 0.21626f, 0.35491f, 0.86898f, 0.9025f, 0.0f, 0.36255f, 1.46154f, 1.38429f, 1.44938f, 1.41407f, 1.45809f, 1.77706f, 0.88361f, 0.09394f, 0.92029f, 1.01541f, 1.09078f, 1.05394f, 1.25418f, 1.40895f, 0.78881f, 0.62721f, 1.55362f, 1.70365f, 1.83765f, 1.7833f, 1.52613f, 1.39727f, 0.44845f, 0.80839f, 1.73151f, 1.63702f, 1.60352f, 1.63081f, 1.5767f, 1.99697f, 0.91883f, 0.62179f, 1.8053f, 1.63263f, 1.72401f, 2.45383f, 1.25455f, 1.07616f, 0.38183f, 0.56256f, 1.8342f, 1.49708f, 1.54651f, 0.90693f, 0.85377f, 0.9732f, 0.0f, 0.0f, 0.42826f, 0.47554f, 0.23275f, 0.5115f, 0.14327f, 0.23193f, 0.0f }; runTest(); };