import torch import numpy as np # Define input and kernel data as tensors input_data = torch.tensor([ 0.823, 0.217, 0.435, 0.981, 0.742, 0.109, 0.518, 0.374, 0.681, 0.147, 0.956, 0.729, 0.654, 0.087, 0.392, 0.784, 0.921, 0.543, 0.231, 0.816, 0.472, 0.614, 0.102, 0.987, 0.398, 0.051, 0.756, 0.841, 0.293, 0.128, 0.417, 0.632, 0.095, 0.184, 0.529, 0.871, 0.958, 0.213, 0.347, 0.725, 0.461, 0.012, 0.278, 0.195, 0.649, 0.853, 0.707, 0.988, 0.988, 0.322, 0.345, 0.123, 0.789, 0.123, 0.456, 0.456, 0.789, 0.123, 0.345, 0.123, 0.789, 0.123, 0.345, 0.123, 0.456, 0.123, 0.345, 0.123, 0.789, 0.123, 0.345, 0.123, 0.789, 0.123, 0.456 ], dtype=torch.float) kernel_data = torch.tensor([ 0.128, 0.754, 0.987, 0.321, 0.412, 0.635, 0.298, 0.017, 0.845, 0.514, 0.729, 0.952, 0.684, 0.378, 0.159, 0.823, 0.547, 0.216, 0.983, 0.231, 0.456, 0.178, 0.654, 0.821, 0.345, 0.987, 0.123, 0.789, 0.543, 0.210, 0.012, 0.371, 0.638, 0.456, 0.198, 0.907, 0.101, 0.432, 0.759, 0.234, 0.567, 0.890, 0.543, 0.876, 0.219, 0.345, 0.678, 0.011, 0.678, 0.011, 0.345, 0.011, 0.345, 0.678 ], dtype=torch.float) # Reshape input data to a 4D tensor (batch_size, channels, height, width) input_data = input_data.reshape(1, 3, 5, 5) # Define the convolution layer conv2d = torch.nn.Conv2d(in_channels=3, out_channels=2, kernel_size=3, padding=1, bias=False) # Set the weights of the convolution layer conv2d.weight = torch.nn.Parameter(kernel_data.reshape(2, 3, 3, 3)) # Perform the convolution output = conv2d(input_data) # Print the output as cpp vector output = torch.flatten(output) print("std::vector expected = {", end="") for i in range(len(output)): if i != 0: print(", ", end="") print(str(round(output[i].item(), 5)) + "f", end="") print("};")