# CUDANet :warning: Work in progress Convolutional Neural Network inference library running on CUDA. ## Quickstart Guide **requirements** - [cmake](https://cmake.org/) - [CUDA](https://developer.nvidia.com/cuda-downloads) - [Google Test](https://github.com/google/googletest) (for testing only) **build** ```sh mkdir build cd build cmake -S .. -DCMAKE_CUDA_ARCHITECTURES=75 # Replace with you cuda architecture make ``` **build and run tests** ```sh make test_main ./test/test_main ``` ### Create Layers and Model ```cpp CUDANet::Model *model = new CUDANet::Model(inputSize, inputChannels, outputSize); // Conv2d CUDANet::Layers::Conv2d *conv2d = new CUDANet::Layers::Conv2d( inputSize, inputChannels, kernelSize, stride, numFilters, CUDANet::Layers::Padding::VALID, CUDANet::Layers::ActivationType::NONE ); if (setWeights) { conv2d->setWeights(getConv1Weights().data()); } model->addLayer("conv1", conv2d); ``` ### Sequential and Functional API Run prediction by passing the input through the layers in the order they have been added. ```cpp std::vector input = {...}; model->predict(input.data()); ``` If you want to use more complex forward pass, using `Concat` or `Add` layers, you can subclass the model class and override the default `predict` function ```cpp class MyModel : public CUDANet::Model { ... } ... float* MyModel::predict(const float* input) { float* d_input = inputLayer->forward(input); d_conv1 = getLayer("conv1")->forward(d_input); d_conv2 = getLayer("conv2")->forward(d_input); d_output = concatLayer->forward(d_conv1, d_conv2); return outputLayer->forward(d_input); } ``` ### Load Pre-trained Weights CUDANet uses format similar to safetensors to load weights and biases. ``` [u_short version, u_int64 header size, header, tensor values] ``` where `header` is a csv format ``` ,, ``` To load weights call `load_weights` function on Model object. To export weights from pytorch you can use the `export_model_weights` function from `tools/utils.py` script. Currently only float32 weights are supported