#include #include #include #include "activation.cuh" #include "batch_norm.cuh" class BatchNormLayerTest : public ::testing::Test { protected: dim2d inputSize; int nChannels; std::vector weights; std::vector biases; std::vector input; std::vector expected; float *d_input; float *d_output; CUDANet::Layers::BatchNorm2d *batchNorm; virtual void SetUp() override { d_input = nullptr; d_output = nullptr; batchNorm = nullptr; } virtual void TearDown() override { if (d_input) { cudaFree(d_input); } } void runTest() { cudaError_t cudaStatus; batchNorm = new CUDANet::Layers::BatchNorm2d( inputSize, nChannels, 1e-5f, CUDANet::Layers::ActivationType::NONE ); batchNorm->setWeights(weights.data()); batchNorm->setBiases(biases.data()); cudaStatus = cudaGetLastError(); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void **)&d_input, sizeof(float) * input.size()); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMemcpy( d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice ); EXPECT_EQ(cudaStatus, cudaSuccess); d_output = batchNorm->forward(d_input); std::vector output(input.size()); cudaStatus = cudaMemcpy( output.data(), d_output, sizeof(float) * output.size(), cudaMemcpyDeviceToHost ); EXPECT_EQ(cudaStatus, cudaSuccess); for (int i = 0; i < output.size(); ++i) { EXPECT_NEAR(output[i], expected[i], 1e-5); } delete batchNorm; } }; TEST_F(BatchNormLayerTest, BatchNormSmallForwardTest) { inputSize = {4, 4}; nChannels = 2; weights = {0.63508f, 0.64903f}; biases = {0.25079f, 0.66841f}; // clang-format off input = { // Channel 0 0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.15524f, 0.38664f, 0.23411f, 0.7137f, // Channel 1 0.32473f, 0.15698f, 0.314f, 0.60888f, 0.80268f, 0.99766f, 0.93694f, 0.89237f, 0.13449f, 0.27367f, 0.53036f, 0.18962f, 0.57672f, 0.48364f, 0.10863f, 0.0571f }; // clang-format on expected = {-0.06007f, 0.951f, 0.18157f, 1.36202f, 0.39244f, 0.47335f, 0.58598f, -1.00188f, 0.59576f, 0.79919f, -0.57001f, 0.70469f, -0.62847f, -0.06578f, -0.43668f, 0.72952f, 0.37726f, 0.02088f, 0.35446f, 0.98092f, 1.39264f, 1.80686f, 1.67786f, 1.58318f, -0.0269f, 0.26878f, 0.81411f, 0.09022f, 0.9126f, 0.71485f, -0.08184f, -0.19131f}; runTest(); } TEST_F(BatchNormLayerTest, BatchNormNonSquareInputTest) { inputSize = {4, 6}; // Non-square input nChannels = 2; weights = {0.63508f, 0.64903f}; biases = {0.25079f, 0.66841f}; input = {// Channel 0 0.38899f, 0.80478f, 0.48836f, 0.97381f, 0.21567f, 0.92312f, 0.57508f, 0.60835f, 0.65467f, 0.00168f, 0.31567f, 0.71345f, 0.65869f, 0.74235f, 0.17928f, 0.70349f, 0.12856f, 0.95645f, 0.15524f, 0.38664f, 0.23411f, 0.7137f, 0.26789f, 0.83412f, // Channel 1 0.32473f, 0.15698f, 0.314f, 0.60888f, 0.23145f, 0.78945f, 0.80268f, 0.99766f, 0.93694f, 0.89237f, 0.61234f, 0.92314f, 0.13449f, 0.27367f, 0.53036f, 0.18962f, 0.45623f, 0.14523f, 0.57672f, 0.48364f, 0.10863f, 0.0571f, 0.78934f, 0.67545f }; expected = {-0.05598f, 0.87495f, 0.1665f, 1.2534f, -0.44404f, 1.13991f, 0.36066f, 0.43515f, 0.53886f, -0.92315f, -0.22014f, 0.67047f, 0.54786f, 0.73517f, -0.52552f, 0.64817f, -0.63907f, 1.21453f, -0.57934f, -0.06124f, -0.40275f, 0.67103f, -0.32712f, 0.94064f, 0.28344f, -0.08405f, 0.25993f, 0.90592f, 0.07909f, 1.30149f, 1.33047f, 1.7576f, 1.62459f, 1.52695f, 0.9135f, 1.59436f, -0.13331f, 0.17158f, 0.73391f, -0.01254f, 0.57151f, -0.10979f, 0.83546f, 0.63156f, -0.18996f, -0.30285f, 1.30124f, 1.05175f}; runTest(); }