#include #include int main(int argc, const char *const argv[]) { if (argc != 3) { std::cerr << "Usage: " << argv[0] << " " << std::endl; return 1; // Return error code indicating incorrect usage } std::cout << "Loading model..." << std::endl; } class BasicConv2d : public CUDANet::Module { public: BasicConv2d( const dim2d inputSize, const int inputChannels, const int outputChannels, const dim2d kernelSize, const dim2d stride, const dim2d padding, const std::string &prefix ) { // Create the convolution layer conv = new CUDANet::Layers::Conv2d( inputSize, inputChannels, kernelSize, stride, outputChannels, padding, CUDANet::Layers::ActivationType::NONE ); dim2d batchNormSize = conv->getOutputDims(); batchNorm = new CUDANet::Layers::BatchNorm2d( batchNormSize, outputChannels, 1e-3f, CUDANet::Layers::ActivationType::RELU ); addLayer(prefix + ".conv", conv); addLayer(prefix + ".bn", batchNorm); } float *forward(const float *d_input) { float *d_output = conv->forward(d_input); return batchNorm->forward(d_output); } dim2d getOutputDims() { return batchNorm->getOutputDims(); } private: CUDANet::Layers::Conv2d *conv; CUDANet::Layers::BatchNorm2d *batchNorm; }; class InceptionA : public CUDANet::Module { public: InceptionA( const dim2d inputSize, const int inputChannels, const int poolFeatures, const std::string &prefix ) : inputSize(inputSize), inputChannels(inputChannels), poolFeatures(poolFeatures) { // Branch 1x1 branch1x1 = new BasicConv2d( inputSize, inputChannels, 64, {1, 1}, {1, 1}, {0, 0}, prefix + ".branch1x1" ); addLayer("", branch1x1); // Branch 5x5 branch5x5_1 = new BasicConv2d( inputSize, inputChannels, 48, {1, 1}, {1, 1}, {0, 0}, prefix + ".branch5x5_1" ); addLayer("", branch5x5_1); branch5x5_2 = new BasicConv2d( inputSize, 48, 64, {5, 5}, {1, 1}, {2, 2}, prefix + ".branch5x5_2" ); addLayer("", branch5x5_2); // Branch 3x3 branch3x3dbl_1 = new BasicConv2d( inputSize, inputChannels, 64, {1, 1}, {1, 1}, {0, 0}, prefix + ".branch3x3dbl_1" ); addLayer("", branch3x3dbl_1); branch3x3dbl_2 = new BasicConv2d( inputSize, 64, 96, {3, 3}, {1, 1}, {1, 1}, prefix + ".branch3x3dbl_2" ); addLayer("", branch3x3dbl_2); branch3x3dbl_3 = new BasicConv2d( inputSize, 96, 96, {3, 3}, {1, 1}, {1, 1}, prefix + ".branch3x3dbl_3" ); addLayer("", branch3x3dbl_3); // Branch Pool branchPool_1 = new CUDANet::Layers::AvgPooling2d( inputSize, inputChannels, {3, 3}, {1, 1}, {1, 1}, CUDANet::Layers::ActivationType::NONE ); addLayer("", branchPool_1); branchPool_2 = new BasicConv2d( branchPool_1->getOutputDims(), inputChannels, poolFeatures, {1, 1}, {1, 1}, {0, 0}, prefix + ".branchPool" ); addLayer("", branchPool_2); // Concat concat_1 = new CUDANet::Layers::Concat( branch1x1->getOutputSize(), branch5x5_2->getOutputSize() ); concat_2 = new CUDANet::Layers::Concat( concat_1->getOutputSize(), branch3x3dbl_3->getOutputSize() ); concat_3 = new CUDANet::Layers::Concat( concat_2->getOutputSize(), branchPool_2->getOutputSize() ); } float *forward(const float *d_input) { float *d_branch1x1_out = branch1x1->forward(d_input); float *d_branch5x5_out = branch5x5_1->forward(d_input); d_branch5x5_out = branch5x5_2->forward(d_branch5x5_out); float *d_branch3x3_out = branch3x3dbl_1->forward(d_input); d_branch3x3_out = branch3x3dbl_2->forward(d_branch3x3_out); d_branch3x3_out = branch3x3dbl_3->forward(d_branch3x3_out); float *d_branchPool_out = branchPool_1->forward(d_input); d_branchPool_out = branchPool_2->forward(d_branchPool_out); float *d_output = concat_1->forward(d_branch1x1_out, d_branch5x5_out); d_output = concat_2->forward(d_output, d_branch3x3_out); d_output = concat_3->forward(d_output, d_branchPool_out); return d_output; } private: dim2d inputSize; int inputChannels; int poolFeatures; BasicConv2d *branch1x1; BasicConv2d *branch5x5_1; BasicConv2d *branch5x5_2; BasicConv2d *branch3x3dbl_1; BasicConv2d *branch3x3dbl_2; BasicConv2d *branch3x3dbl_3; CUDANet::Layers::AvgPooling2d *branchPool_1; BasicConv2d *branchPool_2; CUDANet::Layers::Concat *concat_1; CUDANet::Layers::Concat *concat_2; CUDANet::Layers::Concat *concat_3; }; class InceptionB : public CUDANet::Module { public: InceptionB( const dim2d inputSize, const int inputChannels, const std::string &prefix ) : inputSize(inputSize), inputChannels(inputChannels) { // Branch 3x3 branch3x3 = new BasicConv2d( inputSize, inputChannels, 384, {3, 3}, {2, 2}, {0, 0}, "branch1x1" ); addLayer("", branch3x3); // Branch 3x3dbl branch3x3dbl_1 = new BasicConv2d( inputSize, inputChannels, 64, {1, 1}, {1, 1}, {0, 0}, "branch3x3dbl_1" ); addLayer("", branch3x3dbl_1); branch3x3dbl_2 = new BasicConv2d( branch3x3dbl_1->getOutputDims(), 96, 96, {3, 3}, {1, 1}, {1, 1}, "branch3x3dbl_2" ); addLayer("", branch3x3dbl_2); branch3x3dbl_3 = new BasicConv2d( branch3x3dbl_2->getOutputDims(), 96, 96, {3, 3}, {2, 2}, {1, 1}, "branch3x3dbl_3" ); addLayer("", branch3x3dbl_3); branchPool = new CUDANet::Layers::MaxPooling2d( inputSize, inputChannels, {3, 3}, {2, 2}, {0, 0}, CUDANet::Layers::ActivationType::NONE ); addLayer(prefix + ".branchPool", branchPool); concat_1 = new CUDANet::Layers::Concat( branch3x3->getOutputSize(), branch3x3dbl_3->getOutputSize() ); concat_2 = new CUDANet::Layers::Concat( concat_1->getOutputSize(), branchPool->getOutputSize() ); } float *forward(const float *d_input) { float *d_branch3x3_out = branch3x3->forward(d_input); float *d_branch3x3dbl_out = branch3x3dbl_1->forward(d_input); d_branch3x3dbl_out = branch3x3dbl_2->forward(d_branch3x3dbl_out); d_branch3x3dbl_out = branch3x3dbl_3->forward(d_branch3x3dbl_out); float *d_branchPool_out = branchPool->forward(d_input); float *d_output = concat_1->forward(d_branch3x3_out, d_branch3x3dbl_out); d_output = concat_2->forward(d_output, d_branchPool_out); return d_output; } private: dim2d inputSize; int inputChannels; BasicConv2d *branch3x3; BasicConv2d *branch3x3dbl_1; BasicConv2d *branch3x3dbl_2; BasicConv2d *branch3x3dbl_3; CUDANet::Layers::MaxPooling2d *branchPool; CUDANet::Layers::Concat *concat_1; CUDANet::Layers::Concat *concat_2; }; class InceptionC : public CUDANet::Module { public: InceptionC( const dim2d inputSize, const int inputChannels, const int nChannels_7x7, const std::string &prefix ) : inputSize(inputSize), inputChannels(inputChannels) { // Branch 1x1 branch1x1 = new BasicConv2d( inputSize, inputChannels, 192, {1, 1}, {1, 1}, {0, 0}, "branch1x1" ); // Branch 7x7 branch7x7_1 = new BasicConv2d( inputSize, inputChannels, nChannels_7x7, {1, 1}, {1, 1}, {0, 0}, "branch7x7_1" ); branch7x7_2 = new BasicConv2d( branch7x7_1->getOutputDims(), nChannels_7x7, nChannels_7x7, {1, 7}, {1, 1}, {0, 3}, "branch7x7_2" ); branch7x7_3 = new BasicConv2d( branch7x7_2->getOutputDims(), nChannels_7x7, 192, {7, 1}, {1, 1}, {3, 0}, "branch7x7_3" ); // Branch 7x7dbl branch7x7dbl_1 = new BasicConv2d( inputSize, inputChannels, nChannels_7x7, {1, 1}, {1, 1}, {0, 0}, "branch7x7dbl_1" ); branch7x7dbl_2 = new BasicConv2d( branch7x7dbl_1->getOutputDims(), nChannels_7x7, nChannels_7x7, {7, 1}, {1, 1}, {3, 0}, "branch7x7dbl_2" ); branch7x7dbl_3 = new BasicConv2d( branch7x7dbl_2->getOutputDims(), nChannels_7x7, nChannels_7x7, {1, 7}, {1, 1}, {0, 3}, "branch7x7dbl_3" ); branch7x7dbl_4 = new BasicConv2d( branch7x7dbl_3->getOutputDims(), nChannels_7x7, nChannels_7x7, {7, 1}, {1, 1}, {3, 0}, "branch7x7dbl_4" ); branch7x7dbl_5 = new BasicConv2d( branch7x7dbl_4->getOutputDims(), nChannels_7x7, 192, {1, 7}, {1, 1}, {0, 3}, "branch7x7dbl_5" ); // Branch Pool branchPool_1 = new CUDANet::Layers::AvgPooling2d( inputSize, inputChannels, {3, 3}, {1, 1}, {1, 1}, CUDANet::Layers::ActivationType::NONE ); branchPool_2 = new BasicConv2d( branchPool_1->getOutputDims(), inputChannels, 192, {1, 1}, {1, 1}, {0, 0}, "branchPool_2" ); // Concat concat_1 = new CUDANet::Layers::Concat( branch1x1->getOutputSize(), branch7x7_3->getOutputSize() ); concat_2 = new CUDANet::Layers::Concat( concat_1->getOutputSize(), branch7x7dbl_5->getOutputSize() ); concat_3 = new CUDANet::Layers::Concat( concat_2->getOutputSize(), branchPool_2->getOutputSize() ); } float *forward(const float *d_input) { float *branch1x1_output = branch1x1->forward(d_input); float *branch7x7_output = branch7x7_1->forward(d_input); branch7x7_output = branch7x7_2->forward(branch7x7_output); branch7x7_output = branch7x7_3->forward(branch7x7_output); float *branch7x7dbl_output = branch7x7dbl_1->forward(d_input); branch7x7dbl_output = branch7x7dbl_2->forward(branch7x7dbl_output); branch7x7dbl_output = branch7x7dbl_3->forward(branch7x7dbl_output); branch7x7dbl_output = branch7x7dbl_4->forward(branch7x7dbl_output); branch7x7dbl_output = branch7x7dbl_5->forward(branch7x7dbl_output); float *branchPool_output = branchPool_1->forward(d_input); branchPool_output = branchPool_2->forward(branchPool_output); float *d_output = concat_1->forward(branch1x1_output, branch7x7_output); d_output = concat_2->forward(d_output, branch7x7dbl_output); d_output = concat_3->forward(d_output, branchPool_output); return d_output; } private: dim2d inputSize; int inputChannels; BasicConv2d *branch1x1; BasicConv2d *branch7x7_1; BasicConv2d *branch7x7_2; BasicConv2d *branch7x7_3; BasicConv2d *branch7x7dbl_1; BasicConv2d *branch7x7dbl_2; BasicConv2d *branch7x7dbl_3; BasicConv2d *branch7x7dbl_4; BasicConv2d *branch7x7dbl_5; CUDANet::Layers::AvgPooling2d *branchPool_1; BasicConv2d *branchPool_2; CUDANet::Layers::Concat *concat_1; CUDANet::Layers::Concat *concat_2; CUDANet::Layers::Concat *concat_3; };