#include "gtest/gtest.h" #include #include #include #include "dense.h" #include "test_cublas_fixture.h" class DenseLayerTest : public CublasTestFixture { protected: Layers::Dense commonTestSetup(int inputSize, int outputSize, std::vector& input, std::vector>& weights, std::vector& biases, float*& d_input, float*& d_output) { // Create Dense layer Layers::Dense denseLayer(inputSize, outputSize, cublasHandle); // Set weights and biases denseLayer.setWeights(weights); denseLayer.setBiases(biases); // Allocate device memory cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size()); EXPECT_EQ(cudaStatus, cudaSuccess); cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * outputSize); EXPECT_EQ(cudaStatus, cudaSuccess); // Copy input to device cublasStatus = cublasSetVector(input.size(), sizeof(float), input.data(), 1, d_input, 1); EXPECT_EQ(cublasStatus, CUBLAS_STATUS_SUCCESS); return denseLayer; } void commonTestTeardown(float* d_input, float* d_output) { // Free device memory cudaFree(d_input); cudaFree(d_output); } cudaError_t cudaStatus; cublasStatus_t cublasStatus; }; TEST_F(DenseLayerTest, Init) { for (int i = 1; i < 100; ++i) { for (int j = 1; j < 100; ++j) { int inputSize = i; int outputSize = j; // std::cout << "Dense layer: input size = " << inputSize << ", output size = " << outputSize << std::endl; Layers::Dense denseLayer(inputSize, outputSize, cublasHandle); } } } TEST_F(DenseLayerTest, setWeights) { int inputSize = 4; int outputSize = 5; std::vector> weights = { {0.5f, 1.0f, 0.2f, 0.8f}, {1.2f, 0.3f, 1.5f, 0.4f}, {0.7f, 1.8f, 0.9f, 0.1f}, {0.4f, 2.0f, 0.6f, 1.1f}, {1.3f, 0.5f, 0.0f, 1.7f} }; Layers::Dense denseLayer(inputSize, outputSize, cublasHandle); denseLayer.setWeights(weights); } TEST_F(DenseLayerTest, ForwardUnitWeightMatrix) { int inputSize = 3; int outputSize = 3; std::vector input = {1.0f, 2.0f, 3.0f}; std::vector> weights(inputSize, std::vector(outputSize, 0.0f)); for (int i = 0; i < inputSize; ++i) { for (int j = 0; j < outputSize; ++j) { if (i == j) { weights[i][j] = 1.0f; } } } std::vector biases(outputSize, 1.0f); float* d_input; float* d_output; Layers::Dense denseLayer = commonTestSetup(inputSize, outputSize, input, weights, biases, d_input, d_output); denseLayer.forward(d_input, d_output); std::vector output(outputSize); cublasStatus = cublasGetVector(outputSize, sizeof(float), d_output, 1, output.data(), 1); EXPECT_EQ(cublasStatus, CUBLAS_STATUS_SUCCESS); // Check if the output is a zero vector EXPECT_FLOAT_EQ(output[0], 2.0f); EXPECT_FLOAT_EQ(output[1], 3.0f); EXPECT_FLOAT_EQ(output[2], 4.0f); commonTestTeardown(d_input, d_output); } TEST_F(DenseLayerTest, ForwardRandomWeightMatrix) { int inputSize = 5; int outputSize = 4; std::vector input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f}; std::vector> weights = { {0.5f, 1.2f, 0.7f, 0.4f, 1.3f}, {1.0f, 0.3f, 1.8f, 2.0f, 0.5f}, {0.2f, 1.5f, 0.9f, 0.6f, 0.0f}, {0.8f, 0.4f, 0.1f, 1.1f, 1.7f} }; std::vector biases = {0.2f, 0.5f, 0.7f, 1.1f}; float* d_input; float* d_output; Layers::Dense denseLayer = commonTestSetup(inputSize, outputSize, input, weights, biases, d_input, d_output); denseLayer.forward(d_input, d_output); std::vector output(outputSize); cublasStatus = cublasGetVector(outputSize, sizeof(float), d_output, 1, output.data(), 1); EXPECT_EQ(cublasStatus, CUBLAS_STATUS_SUCCESS); std::vector expectedOutput = {10.4f, 13.0f, 8.9f, 9.3f}; for (int i = 0; i < outputSize; ++i) { EXPECT_NEAR(output[i], expectedOutput[i], 1e-4); // Allow small tolerance for floating-point comparison } commonTestTeardown(d_input, d_output); }